60.2.226 problem 802

Internal problem ID [10800]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, Additional non-linear first order
Problem number : 802
Date solved : Sunday, March 30, 2025 at 07:00:14 PM
CAS classification : [[_1st_order, `_with_symmetry_[F(x),G(x)]`]]

\begin{align*} y^{\prime }&=-\frac {-\frac {1}{x}-\textit {\_F1} \left (y+\frac {1}{x}\right )}{x} \end{align*}

Maple. Time used: 0.022 (sec). Leaf size: 41
ode:=diff(y(x),x) = -(-1/x-_F1(y(x)+1/x))/x; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {\operatorname {RootOf}\left (\textit {\_F1} \left (\textit {\_Z} \right )\right ) x -1}{x} \\ y &= \frac {\operatorname {RootOf}\left (-\ln \left (x \right )+\int _{}^{\textit {\_Z}}\frac {1}{\textit {\_F1} \left (\textit {\_a} \right )}d \textit {\_a} +c_1 \right ) x -1}{x} \\ \end{align*}
Mathematica. Time used: 0.178 (sec). Leaf size: 96
ode=D[y[x],x] == (x^(-1) + F1[x^(-1) + y[x]])/x; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\int _1^{y(x)}-\frac {\text {F1}\left (K[2]+\frac {1}{x}\right ) \int _1^x-\frac {\text {F1}''\left (K[2]+\frac {1}{K[1]}\right )}{\text {F1}\left (K[2]+\frac {1}{K[1]}\right )^2 K[1]^2}dK[1]+1}{\text {F1}\left (K[2]+\frac {1}{x}\right )}dK[2]+\int _1^x\left (\frac {1}{K[1]}+\frac {1}{K[1]^2 \text {F1}\left (y(x)+\frac {1}{K[1]}\right )}\right )dK[1]=c_1,y(x)\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
F1 = Function("F1") 
ode = Eq(Derivative(y(x), x) + (-F1(y(x) + 1/x) - 1/x)/x,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE Derivative(y(x), x) - (x*F1(y(x) + 1/x) + 1)/x**2 cannot be solved by the factorable group method