60.2.223 problem 799

Internal problem ID [10797]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, Additional non-linear first order
Problem number : 799
Date solved : Sunday, March 30, 2025 at 06:57:30 PM
CAS classification : [_Bernoulli]

\begin{align*} y^{\prime }&=\frac {y \left (-1-x \,{\mathrm e}^{\frac {x +1}{x -1}}+x^{2} {\mathrm e}^{\frac {x +1}{x -1}} y-x^{2} {\mathrm e}^{\frac {x +1}{x -1}}+x^{3} {\mathrm e}^{\frac {x +1}{x -1}} y\right )}{x} \end{align*}

Maple. Time used: 0.011 (sec). Leaf size: 107
ode:=diff(y(x),x) = y(x)*(-1-x*exp((1+x)/(x-1))+x^2*exp((1+x)/(x-1))*y(x)-x^2*exp((1+x)/(x-1))+x^3*exp((1+x)/(x-1))*y(x))/x; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {{\mathrm e}^{\frac {\left (-x^{2}-4 x +5\right ) {\mathrm e}^{\frac {x +1}{x -1}}}{2}-6 \,{\mathrm e} \,\operatorname {Ei}_{1}\left (-\frac {2}{x -1}\right )}}{x \left (c_1 -\int \left (x +1\right ) {\mathrm e}^{\frac {-\left (x +5\right ) \left (x -1\right )^{2} {\mathrm e}^{\frac {x +1}{x -1}}-12 \,{\mathrm e} \left (x -1\right ) \operatorname {Ei}_{1}\left (-\frac {2}{x -1}\right )+2 x +2}{2 x -2}}d x \right )} \]
Mathematica. Time used: 1.258 (sec). Leaf size: 228
ode=D[y[x],x] == (y[x]*(-1 - E^((1 + x)/(-1 + x))*x - E^((1 + x)/(-1 + x))*x^2 + E^((1 + x)/(-1 + x))*x^2*y[x] + E^((1 + x)/(-1 + x))*x^3*y[x]))/x; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \frac {\exp \left (\int _1^x\left (-e^{\frac {K[1]+1}{K[1]-1}} (K[1]+1)-\frac {1}{K[1]}\right )dK[1]\right )}{-\int _1^x\exp \left (\frac {K[2]+(K[2]-1) \int _1^{K[2]}\left (-e^{\frac {K[1]+1}{K[1]-1}} (K[1]+1)-\frac {1}{K[1]}\right )dK[1]+1}{K[2]-1}\right ) K[2] (K[2]+1)dK[2]+c_1} \\ y(x)\to 0 \\ y(x)\to -\frac {\exp \left (\int _1^x\left (-e^{\frac {K[1]+1}{K[1]-1}} (K[1]+1)-\frac {1}{K[1]}\right )dK[1]\right )}{\int _1^x\exp \left (\frac {K[2]+(K[2]-1) \int _1^{K[2]}\left (-e^{\frac {K[1]+1}{K[1]-1}} (K[1]+1)-\frac {1}{K[1]}\right )dK[1]+1}{K[2]-1}\right ) K[2] (K[2]+1)dK[2]} \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(Derivative(y(x), x) - (x**3*y(x)*exp((x + 1)/(x - 1)) + x**2*y(x)*exp((x + 1)/(x - 1)) - x**2*exp((x + 1)/(x - 1)) - x*exp((x + 1)/(x - 1)) - 1)*y(x)/x,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out