Internal
problem
ID
[10788]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
Additional
non-linear
first
order
Problem
number
:
790
Date
solved
:
Sunday, March 30, 2025 at 06:45:10 PM
CAS
classification
:
[[_1st_order, `_with_symmetry_[F(x),G(x)]`], _Riccati]
ode:=diff(y(x),x) = (2*x*ln(1/(x-1))-coth((1+x)/(x-1))+coth((1+x)/(x-1))*y(x)^2-2*coth((1+x)/(x-1))*x^2*y(x)+coth((1+x)/(x-1))*x^4)/ln(1/(x-1)); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x] == (-Coth[(1 + x)/(-1 + x)] + x^4*Coth[(1 + x)/(-1 + x)] + 2*x*Log[(-1 + x)^(-1)] - 2*x^2*Coth[(1 + x)/(-1 + x)]*y[x] + Coth[(1 + x)/(-1 + x)]*y[x]^2)/Log[(-1 + x)^(-1)]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((-x**4/tanh((x + 1)/(x - 1)) + 2*x**2*y(x)/tanh((x + 1)/(x - 1)) - 2*x*log(1/(x - 1)) - y(x)**2/tanh((x + 1)/(x - 1)) + 1/tanh((x + 1)/(x - 1)))/log(1/(x - 1)) + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
IndexError : Index out of range: a[1]