60.2.208 problem 784

Internal problem ID [10782]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, Additional non-linear first order
Problem number : 784
Date solved : Sunday, March 30, 2025 at 06:38:40 PM
CAS classification : [[_1st_order, `_with_symmetry_[F(x),G(x)]`], _Riccati]

\begin{align*} y^{\prime }&=\frac {-\sinh \left (x \right )+x^{2} \ln \left (x \right )+2 y \ln \left (x \right ) x +\ln \left (x \right )+y^{2} \ln \left (x \right )}{\sinh \left (x \right )} \end{align*}

Maple. Time used: 0.009 (sec). Leaf size: 22
ode:=diff(y(x),x) = (-sinh(x)+x^2*ln(x)+2*y(x)*ln(x)*x+ln(x)+y(x)^2*ln(x))/sinh(x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = -x -\tan \left (c_1 -\int \ln \left (x \right ) \operatorname {csch}\left (x \right )d x \right ) \]
Mathematica. Time used: 0.45 (sec). Leaf size: 27
ode=D[y[x],x] == Csch[x]*(Log[x] + x^2*Log[x] - Sinh[x] + 2*x*Log[x]*y[x] + Log[x]*y[x]^2); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to -x+\tan \left (\int _1^x\text {csch}(K[5]) \log (K[5])dK[5]+c_1\right ) \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((-x**2*log(x) - 2*x*y(x)*log(x) - y(x)**2*log(x) - log(x) + sinh(x))/sinh(x) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
IndexError : Index out of range: a[1]