Internal
problem
ID
[10755]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
Additional
non-linear
first
order
Problem
number
:
757
Date
solved
:
Sunday, March 30, 2025 at 06:35:05 PM
CAS
classification
:
[[_1st_order, _with_linear_symmetries], _rational, [_Abel, `2nd type`, `class A`]]
ode:=diff(y(x),x) = (-4*x*y(x)+x^3+2*x^2-4*x-8)/(-8*y(x)+2*x^2+4*x-8); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x] == (-8 - 4*x + 2*x^2 + x^3 - 4*x*y[x])/(-8 + 4*x + 2*x^2 - 8*y[x]); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(Derivative(y(x), x) - (x**3 + 2*x**2 - 4*x*y(x) - 4*x - 8)/(2*x**2 + 4*x - 8*y(x) - 8),0) ics = {} dsolve(ode,func=y(x),ics=ics)