60.2.166 problem 742

Internal problem ID [10740]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, Additional non-linear first order
Problem number : 742
Date solved : Sunday, March 30, 2025 at 06:31:17 PM
CAS classification : unknown

\begin{align*} y^{\prime }&=-\frac {\cos \left (y\right ) \left (x -\cos \left (y\right )+1\right )}{\left (x \sin \left (y\right )-1\right ) \left (x +1\right )} \end{align*}

Maple. Time used: 0.068 (sec). Leaf size: 239
ode:=diff(y(x),x) = -cos(y(x))/(x*sin(y(x))-1)*(x-cos(y(x))+1)/(1+x); 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \arctan \left (\frac {\left (\ln \left (x +1\right )-c_1 \right ) \sqrt {\ln \left (x +1\right )^{2}-2 \ln \left (x +1\right ) c_1 +c_1^{2}-x^{2}+1}+x}{c_1^{2}-2 \ln \left (x +1\right ) c_1 +\ln \left (x +1\right )^{2}+1}, \frac {x \ln \left (x +1\right )-c_1 x -\sqrt {\ln \left (x +1\right )^{2}-2 \ln \left (x +1\right ) c_1 +c_1^{2}-x^{2}+1}}{c_1^{2}-2 \ln \left (x +1\right ) c_1 +\ln \left (x +1\right )^{2}+1}\right ) \\ y &= \arctan \left (\frac {\left (-\ln \left (x +1\right )+c_1 \right ) \sqrt {\ln \left (x +1\right )^{2}-2 \ln \left (x +1\right ) c_1 +c_1^{2}-x^{2}+1}+x}{c_1^{2}-2 \ln \left (x +1\right ) c_1 +\ln \left (x +1\right )^{2}+1}, \frac {x \ln \left (x +1\right )-c_1 x +\sqrt {\ln \left (x +1\right )^{2}-2 \ln \left (x +1\right ) c_1 +c_1^{2}-x^{2}+1}}{c_1^{2}-2 \ln \left (x +1\right ) c_1 +\ln \left (x +1\right )^{2}+1}\right ) \\ \end{align*}
Mathematica. Time used: 61.801 (sec). Leaf size: 221
ode=D[y[x],x] == -(((1 + x - Cos[y[x]])*Cos[y[x]])/((1 + x)*(-1 + x*Sin[y[x]]))); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\sec ^{-1}\left (\frac {-\sqrt {-x^2+\log ^2(x+1)+2 c_1 \log (x+1)+1+c_1{}^2}+x \log (x+1)+c_1 x}{x^2-1}\right ) \\ y(x)\to \sec ^{-1}\left (\frac {-\sqrt {-x^2+\log ^2(x+1)+2 c_1 \log (x+1)+1+c_1{}^2}+x \log (x+1)+c_1 x}{x^2-1}\right ) \\ y(x)\to -\sec ^{-1}\left (\frac {\sqrt {-x^2+\log ^2(x+1)+2 c_1 \log (x+1)+1+c_1{}^2}+x \log (x+1)+c_1 x}{x^2-1}\right ) \\ y(x)\to \sec ^{-1}\left (\frac {\sqrt {-x^2+\log ^2(x+1)+2 c_1 \log (x+1)+1+c_1{}^2}+x \log (x+1)+c_1 x}{x^2-1}\right ) \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(Derivative(y(x), x) + (x - cos(y(x)) + 1)*cos(y(x))/((x + 1)*(x*sin(y(x)) - 1)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out