Internal
problem
ID
[10736]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
Additional
non-linear
first
order
Problem
number
:
738
Date
solved
:
Sunday, March 30, 2025 at 06:30:59 PM
CAS
classification
:
[`y=_G(x,y')`]
ode:=diff(y(x),x) = 2*a/(-x^2*y(x)+2*a*y(x)^4*x^2-16*a^2*x*y(x)^2+32*a^3); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x] == (2*a)/(32*a^3 - x^2*y[x] - 16*a^2*x*y[x]^2 + 2*a*x^2*y[x]^4); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") y = Function("y") ode = Eq(-2*a/(32*a**3 - 16*a**2*x*y(x)**2 + 2*a*x**2*y(x)**4 - x**2*y(x)) + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -2*a/(32*a**3 - 16*a**2*x*y(x)**2 + 2*a*x**2*y(x)**4 - x**2*y(x)) + Derivative(y(x), x) cannot be solved by the lie group method