Internal
problem
ID
[10731]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
Additional
non-linear
first
order
Problem
number
:
733
Date
solved
:
Sunday, March 30, 2025 at 06:28:03 PM
CAS
classification
:
[[_1st_order, `_with_symmetry_[F(x),G(x)]`], _Riccati]
ode:=diff(y(x),x) = (2*x*sin(x)-ln(2*x)+ln(2*x)*x^4-2*ln(2*x)*x^2*y(x)+ln(2*x)*y(x)^2)/sin(x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x] == Csc[x]*(-Log[2*x] + x^4*Log[2*x] + 2*x*Sin[x] - 2*x^2*Log[2*x]*y[x] + Log[2*x]*y[x]^2); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((-x**4*log(2*x) + 2*x**2*y(x)*log(2*x) - 2*x*sin(x) - y(x)**2*log(2*x) + log(2*x))/sin(x) + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out