60.2.147 problem 723
Internal
problem
ID
[10721]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
Additional
non-linear
first
order
Problem
number
:
723
Date
solved
:
Sunday, March 30, 2025 at 06:27:13 PM
CAS
classification
:
[[_1st_order, _with_linear_symmetries]]
\begin{align*} y^{\prime }&=\frac {2 a}{y+2 a y^{4}-16 a^{2} x y^{2}+32 a^{3} x^{2}} \end{align*}
✓ Maple. Time used: 0.016 (sec). Leaf size: 692
ode:=diff(y(x),x) = 2*a/(y(x)+2*a*y(x)^4-16*a^2*x*y(x)^2+32*a^3*x^2);
dsolve(ode,y(x), singsol=all);
\begin{align*} \text {Solution too large to show}\end{align*}
✓ Mathematica. Time used: 17.548 (sec). Leaf size: 672
ode=D[y[x],x] == (2*a)/(32*a^3*x^2 + y[x] - 16*a^2*x*y[x]^2 + 2*a*y[x]^4);
ic={};
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
\begin{align*}
y(x)\to -\frac {\sqrt [3]{-1024 a^6 c_1{}^3+9216 a^5 c_1 x-432 a^2+16 \sqrt {a^4 \left (\left (64 a^4 c_1{}^3-576 a^3 c_1 x+27\right ){}^2-4096 a^5 \left (3 x+a c_1{}^2\right ){}^3\right )}}}{12 \sqrt [3]{2} a}-\frac {8 a^2 \left (3 x+a c_1{}^2\right )}{3 \sqrt [3]{-64 a^6 c_1{}^3+576 a^5 c_1 x-27 a^2+3 \sqrt {3} \sqrt {-a^4 \left (4096 a^7 c_1{}^4 x-8192 a^6 c_1{}^2 x^2+4096 a^5 x^3-128 a^4 c_1{}^3+1152 a^3 c_1 x-27\right )}}}+\frac {2 a c_1}{3} \\
y(x)\to \frac {\left (1-i \sqrt {3}\right ) \sqrt [3]{-1024 a^6 c_1{}^3+9216 a^5 c_1 x-432 a^2+16 \sqrt {a^4 \left (\left (64 a^4 c_1{}^3-576 a^3 c_1 x+27\right ){}^2-4096 a^5 \left (3 x+a c_1{}^2\right ){}^3\right )}}}{24 \sqrt [3]{2} a}+\frac {4 \left (1+i \sqrt {3}\right ) a^2 \left (3 x+a c_1{}^2\right )}{3 \sqrt [3]{-64 a^6 c_1{}^3+576 a^5 c_1 x-27 a^2+3 \sqrt {3} \sqrt {-a^4 \left (4096 a^7 c_1{}^4 x-8192 a^6 c_1{}^2 x^2+4096 a^5 x^3-128 a^4 c_1{}^3+1152 a^3 c_1 x-27\right )}}}+\frac {2 a c_1}{3} \\
y(x)\to \frac {\left (1+i \sqrt {3}\right ) \sqrt [3]{-1024 a^6 c_1{}^3+9216 a^5 c_1 x-432 a^2+16 \sqrt {a^4 \left (\left (64 a^4 c_1{}^3-576 a^3 c_1 x+27\right ){}^2-4096 a^5 \left (3 x+a c_1{}^2\right ){}^3\right )}}}{24 \sqrt [3]{2} a}+\frac {4 \left (1-i \sqrt {3}\right ) a^2 \left (3 x+a c_1{}^2\right )}{3 \sqrt [3]{-64 a^6 c_1{}^3+576 a^5 c_1 x-27 a^2+3 \sqrt {3} \sqrt {-a^4 \left (4096 a^7 c_1{}^4 x-8192 a^6 c_1{}^2 x^2+4096 a^5 x^3-128 a^4 c_1{}^3+1152 a^3 c_1 x-27\right )}}}+\frac {2 a c_1}{3} \\
\end{align*}
✗ Sympy
from sympy import *
x = symbols("x")
a = symbols("a")
y = Function("y")
ode = Eq(-2*a/(32*a**3*x**2 - 16*a**2*x*y(x)**2 + 2*a*y(x)**4 + y(x)) + Derivative(y(x), x),0)
ics = {}
dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -2*a/(32*a**3*x**2 - 16*a**2*x*y(x)**2 + 2*a*y(x)**4 + y(x)) + Derivative(y(x), x) cannot be solved by the lie group method