7.5.47 problem 47

Internal problem ID [151]
Book : Elementary Differential Equations. By C. Henry Edwards, David E. Penney and David Calvis. 6th edition. 2008
Section : Chapter 1. First order differential equations. Section 1.6 (substitution and exact equations). Problems at page 72
Problem number : 47
Date solved : Saturday, March 29, 2025 at 04:37:10 PM
CAS classification : [[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

\begin{align*} y^{\prime \prime }&={y^{\prime }}^{2} \end{align*}

Maple. Time used: 0.016 (sec). Leaf size: 15
ode:=diff(diff(y(x),x),x) = diff(y(x),x)^2; 
dsolve(ode,y(x), singsol=all);
 
\[ y = -\ln \left (-c_1 x -c_2 \right ) \]
Mathematica. Time used: 0.18 (sec). Leaf size: 15
ode=D[y[x],{x,2}]==D[y[x],x]^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to c_2-\log (x+c_1) \]
Sympy. Time used: 0.444 (sec). Leaf size: 8
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-Derivative(y(x), x)**2 + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} - \log {\left (C_{2} + x \right )} \]