60.2.140 problem 716

Internal problem ID [10714]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, Additional non-linear first order
Problem number : 716
Date solved : Sunday, March 30, 2025 at 06:25:26 PM
CAS classification : [_rational]

\begin{align*} y^{\prime }&=\frac {3 x^{4}+3 x^{3}+\sqrt {9 x^{4}-4 y^{3}}}{\left (x +1\right ) y^{2}} \end{align*}

Maple. Time used: 0.117 (sec). Leaf size: 37
ode:=diff(y(x),x) = (3*x^4+3*x^3+(9*x^4-4*y(x)^3)^(1/2))/(1+x)/y(x)^2; 
dsolve(ode,y(x), singsol=all);
 
\[ \int _{\textit {\_b}}^{y}\frac {\textit {\_a}^{2}}{\sqrt {9 x^{4}-4 \textit {\_a}^{3}}}d \textit {\_a} -\ln \left (x +1\right )-c_1 = 0 \]
Mathematica. Time used: 3.349 (sec). Leaf size: 133
ode=D[y[x],x] == (3*x^3 + 3*x^4 + Sqrt[9*x^4 - 4*y[x]^3])/((1 + x)*y[x]^2); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \left (-\frac {3}{2}\right )^{2/3} \sqrt [3]{x^4-4 \log ^2(x+1)+8 c_1 \log (x+1)-4 c_1{}^2} \\ y(x)\to \left (\frac {3}{2}\right )^{2/3} \sqrt [3]{x^4-4 \log ^2(x+1)+8 c_1 \log (x+1)-4 c_1{}^2} \\ y(x)\to -\sqrt [3]{-1} \left (\frac {3}{2}\right )^{2/3} \sqrt [3]{x^4-4 \log ^2(x+1)+8 c_1 \log (x+1)-4 c_1{}^2} \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(Derivative(y(x), x) - (3*x**4 + 3*x**3 + sqrt(9*x**4 - 4*y(x)**3))/((x + 1)*y(x)**2),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out