60.2.96 problem 672

Internal problem ID [10670]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, Additional non-linear first order
Problem number : 672
Date solved : Sunday, March 30, 2025 at 06:18:28 PM
CAS classification : [`y=_G(x,y')`]

\begin{align*} y^{\prime }&=\frac {x^{2} \left (3 x +\sqrt {-9 x^{4}+4 y^{3}}\right )}{y^{2}} \end{align*}

Maple. Time used: 0.089 (sec). Leaf size: 36
ode:=diff(y(x),x) = x^2*(3*x+(-9*x^4+4*y(x)^3)^(1/2))/y(x)^2; 
dsolve(ode,y(x), singsol=all);
 
\[ \int _{\textit {\_b}}^{y}\frac {\textit {\_a}^{2}}{\sqrt {-9 x^{4}+4 \textit {\_a}^{3}}}d \textit {\_a} -\frac {x^{3}}{3}-c_1 = 0 \]
Mathematica. Time used: 12.137 (sec). Leaf size: 4512
ode=D[y[x],x] == (x^2*(3*x + Sqrt[-9*x^4 + 4*y[x]^3]))/y[x]^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Too large to display

Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x**2*(3*x + sqrt(-9*x**4 + 4*y(x)**3))/y(x)**2 + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out