Internal
problem
ID
[145]
Book
:
Elementary
Differential
Equations.
By
C.
Henry
Edwards,
David
E.
Penney
and
David
Calvis.
6th
edition.
2008
Section
:
Chapter
1.
First
order
differential
equations.
Section
1.6
(substitution
and
exact
equations).
Problems
at
page
72
Problem
number
:
41
Date
solved
:
Saturday, March 29, 2025 at 04:36:44 PM
CAS
classification
:
[_exact, _rational]
ode:=2*x/y(x)-3*y(x)^2/x^4+(2*y(x)/x^3-x^2/y(x)^2+1/y(x)^(1/2))*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=( 2*x/y[x] -3*y[x]^2/x^4 )+( 2*y[x]/x^3 -x^2/y[x]^2 + 1/Sqrt[y[x]] )*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") y = Function("y") ode = Eq(2*x/y(x) + (-x**2/y(x)**2 + 1/sqrt(y(x)) + 2*y(x)/x**3)*Derivative(y(x), x) - 3*y(x)**2/x**4,0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out