Internal
problem
ID
[143]
Book
:
Elementary
Differential
Equations.
By
C.
Henry
Edwards,
David
E.
Penney
and
David
Calvis.
6th
edition.
2008
Section
:
Chapter
1.
First
order
differential
equations.
Section
1.6
(substitution
and
exact
equations).
Problems
at
page
72
Problem
number
:
39
Date
solved
:
Saturday, March 29, 2025 at 04:36:23 PM
CAS
classification
:
[_exact, _rational]
ode:=3*x^2*y(x)^3+y(x)^4+(3*x^3*y(x)^2+y(x)^4+4*x*y(x)^3)*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=( 3*x^2*y[x]^3+y[x]^4)+(3*x^3*y[x]^2+y[x]^4+4*x*y[x]^3 )*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(3*x**2*y(x)**3 + (3*x**3*y(x)**2 + 4*x*y(x)**3 + y(x)**4)*Derivative(y(x), x) + y(x)**4,0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out