7.5.37 problem 37

Internal problem ID [141]
Book : Elementary Differential Equations. By C. Henry Edwards, David E. Penney and David Calvis. 6th edition. 2008
Section : Chapter 1. First order differential equations. Section 1.6 (substitution and exact equations). Problems at page 72
Problem number : 37
Date solved : Saturday, March 29, 2025 at 04:36:16 PM
CAS classification : [_exact]

\begin{align*} \cos \left (x \right )+\ln \left (y\right )+\left (\frac {x}{y}+{\mathrm e}^{y}\right ) y^{\prime }&=0 \end{align*}

Maple. Time used: 0.123 (sec). Leaf size: 24
ode:=cos(x)+ln(y(x))+(x/y(x)+exp(y(x)))*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{\operatorname {RootOf}\left ({\mathrm e}^{\textit {\_Z}}-\ln \left (-\textit {\_Z} x -c_1 -\sin \left (x \right )\right )\right )} \]
Mathematica. Time used: 0.399 (sec). Leaf size: 18
ode=( Cos[x]+Log[y[x]] )+( x/y[x]+Exp[y[x]] )*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [e^{y(x)}+x \log (y(x))+\sin (x)=c_1,y(x)\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((x/y(x) + exp(y(x)))*Derivative(y(x), x) + log(y(x)) + cos(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out