60.2.40 problem 616

Internal problem ID [10614]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, Additional non-linear first order
Problem number : 616
Date solved : Sunday, March 30, 2025 at 06:10:28 PM
CAS classification : [[_1st_order, `_with_symmetry_[F(x),G(x)*y+H(x)]`]]

\begin{align*} y^{\prime }&=-\frac {-x^{2}+2 x^{3} y-F \left (\left (x y-1\right ) x \right )}{x^{4}} \end{align*}

Maple. Time used: 0.024 (sec). Leaf size: 38
ode:=diff(y(x),x) = -1/x^4*(-x^2+2*x^3*y(x)-F((x*y(x)-1)*x)); 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {x +\operatorname {RootOf}\left (F \left (\textit {\_Z} \right )\right )}{x^{2}} \\ y &= \frac {\operatorname {RootOf}\left (\int _{}^{\textit {\_Z}}\frac {1}{F \left (\textit {\_a} \right )}d \textit {\_a} x +c_1 x +1\right )+x}{x^{2}} \\ \end{align*}
Mathematica. Time used: 0.372 (sec). Leaf size: 177
ode=D[y[x],x] == (x^2 + F[x*(-1 + x*y[x])] - 2*x^3*y[x])/x^4; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\int _1^{y(x)}-\frac {x^2+F(x (x K[2]-1)) \int _1^x\left (\frac {2 K[2] F''(K[1] (K[1] K[2]-1)) K[1]^3}{F(K[1] (K[1] K[2]-1))^2}-\frac {F''(K[1] (K[1] K[2]-1)) K[1]^2}{F(K[1] (K[1] K[2]-1))^2}-\frac {2 K[1]}{F(K[1] (K[1] K[2]-1))}\right )dK[1]}{F(x (x K[2]-1))}dK[2]+\int _1^x\left (-\frac {2 K[1] y(x)}{F(K[1] (K[1] y(x)-1))}+\frac {1}{F(K[1] (K[1] y(x)-1))}+\frac {1}{K[1]^2}\right )dK[1]=c_1,y(x)\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
F = Function("F") 
ode = Eq(Derivative(y(x), x) + (2*x**3*y(x) - x**2 - F(x*(x*y(x) - 1)))/x**4,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE Derivative(y(x), x) - (-2*x**3*y(x) + x**2 + F(x*(x*y(x) - 1)))/x**4 cannot be solved by the factorable group method