60.2.34 problem 610

Internal problem ID [10608]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, Additional non-linear first order
Problem number : 610
Date solved : Sunday, March 30, 2025 at 06:10:06 PM
CAS classification : [[_homogeneous, `class D`]]

\begin{align*} y^{\prime }&=\frac {y+F \left (\frac {y}{x}\right ) x^{2}}{x} \end{align*}

Maple. Time used: 0.004 (sec). Leaf size: 20
ode:=diff(y(x),x) = (y(x)+F(y(x)/x)*x^2)/x; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \operatorname {RootOf}\left (-\int _{}^{\textit {\_Z}}\frac {1}{F \left (\textit {\_a} \right )}d \textit {\_a} +x +c_1 \right ) x \]
Mathematica. Time used: 0.084 (sec). Leaf size: 25
ode=D[y[x],x] == (x^2*F[y[x]/x] + y[x])/x; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\int _1^{\frac {y(x)}{x}}\frac {1}{F(K[1])}dK[1]=x+c_1,y(x)\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
F = Function("F") 
ode = Eq(Derivative(y(x), x) - (x**2*F(y(x)/x) + y(x))/x,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE -x*F(y(x)/x) + Derivative(y(x), x) - y(x)/x cannot be solved by the factorable group method