7.5.35 problem 35

Internal problem ID [139]
Book : Elementary Differential Equations. By C. Henry Edwards, David E. Penney and David Calvis. 6th edition. 2008
Section : Chapter 1. First order differential equations. Section 1.6 (substitution and exact equations). Problems at page 72
Problem number : 35
Date solved : Saturday, March 29, 2025 at 04:35:33 PM
CAS classification : [_exact]

\begin{align*} x^{3}+\frac {y}{x}+\left (y^{2}+\ln \left (x \right )\right ) y^{\prime }&=0 \end{align*}

Maple. Time used: 0.008 (sec). Leaf size: 305
ode:=x^3+y(x)/x+(y(x)^2+ln(x))*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {\left (-3 x^{4}-12 c_1 +\sqrt {64 \ln \left (x \right )^{3}+9 \left (x^{4}+4 c_1 \right )^{2}}\right )^{{2}/{3}}-4 \ln \left (x \right )}{2 \left (-3 x^{4}-12 c_1 +\sqrt {64 \ln \left (x \right )^{3}+9 \left (x^{4}+4 c_1 \right )^{2}}\right )^{{1}/{3}}} \\ y &= \frac {i \left (-\left (-3 x^{4}-12 c_1 +\sqrt {64 \ln \left (x \right )^{3}+9 \left (x^{4}+4 c_1 \right )^{2}}\right )^{{2}/{3}}-4 \ln \left (x \right )\right ) \sqrt {3}-\left (-3 x^{4}-12 c_1 +\sqrt {64 \ln \left (x \right )^{3}+9 \left (x^{4}+4 c_1 \right )^{2}}\right )^{{2}/{3}}+4 \ln \left (x \right )}{4 \left (-3 x^{4}-12 c_1 +\sqrt {64 \ln \left (x \right )^{3}+9 \left (x^{4}+4 c_1 \right )^{2}}\right )^{{1}/{3}}} \\ y &= \frac {i \left (\left (-3 x^{4}-12 c_1 +\sqrt {64 \ln \left (x \right )^{3}+9 \left (x^{4}+4 c_1 \right )^{2}}\right )^{{2}/{3}}+4 \ln \left (x \right )\right ) \sqrt {3}-\left (-3 x^{4}-12 c_1 +\sqrt {64 \ln \left (x \right )^{3}+9 \left (x^{4}+4 c_1 \right )^{2}}\right )^{{2}/{3}}+4 \ln \left (x \right )}{4 \left (-3 x^{4}-12 c_1 +\sqrt {64 \ln \left (x \right )^{3}+9 \left (x^{4}+4 c_1 \right )^{2}}\right )^{{1}/{3}}} \\ \end{align*}
Mathematica. Time used: 2.048 (sec). Leaf size: 326
ode=(x^2+y[x]/x)+(y[x]^2+Log[x])*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \frac {-2 \sqrt [3]{2} \log (x)+2^{2/3} \left (-x^3+\sqrt {4 \log ^3(x)+\left (x^3-3 c_1\right ){}^2}+3 c_1\right ){}^{2/3}}{2 \sqrt [3]{-x^3+\sqrt {4 \log ^3(x)+\left (x^3-3 c_1\right ){}^2}+3 c_1}} \\ y(x)\to \frac {i 2^{2/3} \left (\sqrt {3}+i\right ) \left (-x^3+\sqrt {4 \log ^3(x)+\left (x^3-3 c_1\right ){}^2}+3 c_1\right ){}^{2/3}+\sqrt [3]{2} \left (2+2 i \sqrt {3}\right ) \log (x)}{4 \sqrt [3]{-x^3+\sqrt {4 \log ^3(x)+\left (x^3-3 c_1\right ){}^2}+3 c_1}} \\ y(x)\to \frac {2^{2/3} \left (-1-i \sqrt {3}\right ) \left (-x^3+\sqrt {4 \log ^3(x)+\left (x^3-3 c_1\right ){}^2}+3 c_1\right ){}^{2/3}+\sqrt [3]{2} \left (2-2 i \sqrt {3}\right ) \log (x)}{4 \sqrt [3]{-x^3+\sqrt {4 \log ^3(x)+\left (x^3-3 c_1\right ){}^2}+3 c_1}} \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**3 + (y(x)**2 + log(x))*Derivative(y(x), x) + y(x)/x,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE Derivative(y(x), x) - (-x**4 - y(x))/(x*(y(x)**2 + log(x))) cannot be solved by the factorable group method