60.2.20 problem 596

Internal problem ID [10594]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, Additional non-linear first order
Problem number : 596
Date solved : Sunday, March 30, 2025 at 06:09:15 PM
CAS classification : [[_1st_order, `_with_symmetry_[F(x),G(x)]`]]

\begin{align*} y^{\prime }&=\frac {-2 x^{2}+x +F \left (y+x^{2}-x \right )}{x} \end{align*}

Maple. Time used: 0.019 (sec). Leaf size: 39
ode:=diff(y(x),x) = (-2*x^2+x+F(y(x)+x^2-x))/x; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= -x^{2}+x +\operatorname {RootOf}\left (F \left (\textit {\_Z} \right )\right ) \\ y &= -x^{2}+\operatorname {RootOf}\left (-\ln \left (x \right )+\int _{}^{\textit {\_Z}}\frac {1}{F \left (\textit {\_a} \right )}d \textit {\_a} +c_1 \right )+x \\ \end{align*}
Mathematica. Time used: 0.246 (sec). Leaf size: 156
ode=D[y[x],x] == (x - 2*x^2 + F[-x + x^2 + y[x]])/x; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\int _1^{y(x)}-\frac {F\left (x^2-x+K[2]\right ) \int _1^x\left (\frac {2 K[1] F''\left (K[1]^2-K[1]+K[2]\right )}{F\left (K[1]^2-K[1]+K[2]\right )^2}-\frac {F''\left (K[1]^2-K[1]+K[2]\right )}{F\left (K[1]^2-K[1]+K[2]\right )^2}\right )dK[1]+1}{F\left (x^2-x+K[2]\right )}dK[2]+\int _1^x\left (-\frac {2 K[1]}{F\left (K[1]^2-K[1]+y(x)\right )}+\frac {1}{F\left (K[1]^2-K[1]+y(x)\right )}+\frac {1}{K[1]}\right )dK[1]=c_1,y(x)\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
F = Function("F") 
ode = Eq(Derivative(y(x), x) - (-2*x**2 + x + F(x**2 - x + y(x)))/x,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE 2*x + Derivative(y(x), x) - 1 - F(x**2 - x + y(x))/x cannot be solved by the factorable group method