60.2.6 problem 582

Internal problem ID [10580]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, Additional non-linear first order
Problem number : 582
Date solved : Sunday, March 30, 2025 at 06:08:20 PM
CAS classification : [[_1st_order, `_with_symmetry_[F(x),G(y)]`]]

\begin{align*} y^{\prime }&=\frac {1+F \left (\frac {y a x +1}{a x}\right ) a \,x^{2}}{a \,x^{2}} \end{align*}

Maple. Time used: 0.020 (sec). Leaf size: 48
ode:=diff(y(x),x) = (1+F((y(x)*a*x+1)/a/x)*a*x^2)/a/x^2; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {\operatorname {RootOf}\left (F \left (\textit {\_Z} \right )\right ) a x -1}{a x} \\ y &= \frac {\operatorname {RootOf}\left (-x +\int _{}^{\textit {\_Z}}\frac {1}{F \left (\textit {\_a} \right )}d \textit {\_a} +c_1 \right ) a x -1}{a x} \\ \end{align*}
Mathematica. Time used: 0.279 (sec). Leaf size: 142
ode=D[y[x],x] == (1 + a*x^2*F[(1 + a*x*y[x])/(a*x)])/(a*x^2); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\int _1^{y(x)}-\frac {F\left (\frac {a x K[2]+1}{a x}\right ) \int _1^x\frac {F''\left (\frac {a K[1] K[2]+1}{a K[1]}\right )}{a F\left (\frac {a K[1] K[2]+1}{a K[1]}\right )^2 K[1]^2}dK[1]-1}{F\left (\frac {a x K[2]+1}{a x}\right )}dK[2]+\int _1^x\left (-1-\frac {1}{a K[1]^2 F\left (\frac {a K[1] y(x)+1}{a K[1]}\right )}\right )dK[1]=c_1,y(x)\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
y = Function("y") 
F = Function("F") 
ode = Eq(Derivative(y(x), x) - (a*x**2*F((a*x*y(x) + 1)/(a*x)) + 1)/(a*x**2),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE -F(y(x) + 1/(a*x)) + Derivative(y(x), x) - 1/(a*x**2) cannot be solved by the factorable group method