60.1.543 problem 556

Internal problem ID [10557]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, linear first order
Problem number : 556
Date solved : Sunday, March 30, 2025 at 06:01:22 PM
CAS classification : [_dAlembert]

\begin{align*} \sqrt {{y^{\prime }}^{2}+1}+x {y^{\prime }}^{2}+y&=0 \end{align*}

Maple. Time used: 0.428 (sec). Leaf size: 693
ode:=(1+diff(y(x),x)^2)^(1/2)+x*diff(y(x),x)^2+y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= -1 \\ \frac {x \left (2 \sqrt {2}\, \sqrt {\frac {2 x^{2}-2 x y+\sqrt {4 x^{2}-4 x y+1}+1}{x^{2}}}\, x -4 x y+2 \sqrt {4 x^{2}-4 x y+1}+2-4 \sqrt {-4 x y+2 \sqrt {4 x^{2}-4 x y+1}+2}\, x -4 \,\operatorname {arcsinh}\left (\frac {\sqrt {-4 x y+2 \sqrt {4 x^{2}-4 x y+1}+2}}{2 x}\right ) x +c_1 x +4 x^{2}\right )}{{\left (\sqrt {-4 x y+2 \sqrt {4 x^{2}-4 x y+1}+2}-2 x \right )}^{2}} &= 0 \\ \frac {2 x^{2} \sqrt {2}\, \sqrt {\frac {2 x^{2}-2 x y+\sqrt {4 x^{2}-4 x y+1}+1}{x^{2}}}+4 x^{3}+c_1 \,x^{2}-4 x^{2} y+4 x^{2} \sqrt {-4 x y+2 \sqrt {4 x^{2}-4 x y+1}+2}+4 x^{2} \operatorname {arcsinh}\left (\frac {\sqrt {-4 x y+2 \sqrt {4 x^{2}-4 x y+1}+2}}{2 x}\right )+2 x \sqrt {4 x^{2}-4 x y+1}+2 x}{{\left (\sqrt {-4 x y+2 \sqrt {4 x^{2}-4 x y+1}+2}+2 x \right )}^{2}} &= 0 \\ -\frac {x \left (4 x \,\operatorname {arcsinh}\left (\frac {\sqrt {-4 x y-2 \sqrt {4 x^{2}-4 x y+1}+2}}{2 x}\right )-2 x \sqrt {\frac {4 x^{2}-4 x y-2 \sqrt {4 x^{2}-4 x y+1}+2}{x^{2}}}+4 x y+2 \sqrt {4 x^{2}-4 x y+1}-2+4 \sqrt {-4 x y-2 \sqrt {4 x^{2}-4 x y+1}+2}\, x -c_1 x -4 x^{2}\right )}{{\left (\sqrt {-4 x y-2 \sqrt {4 x^{2}-4 x y+1}+2}-2 x \right )}^{2}} &= 0 \\ \frac {4 x^{3}+c_1 \,x^{2}-4 x^{2} y+4 x^{2} \sqrt {-4 x y-2 \sqrt {4 x^{2}-4 x y+1}+2}+2 x^{2} \sqrt {\frac {4 x^{2}-4 x y-2 \sqrt {4 x^{2}-4 x y+1}+2}{x^{2}}}+4 x^{2} \operatorname {arcsinh}\left (\frac {\sqrt {-4 x y-2 \sqrt {4 x^{2}-4 x y+1}+2}}{2 x}\right )-2 x \sqrt {4 x^{2}-4 x y+1}+2 x}{{\left (\sqrt {-4 x y-2 \sqrt {4 x^{2}-4 x y+1}+2}+2 x \right )}^{2}} &= 0 \\ \end{align*}
Mathematica. Time used: 3.049 (sec). Leaf size: 78
ode=y[x] + x*D[y[x],x]^2 + Sqrt[1 + D[y[x],x]^2]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\left \{x=\frac {\log \left (\sqrt {K[1]^2+1}-K[1]\right )-\sqrt {K[1]^2+1}}{(K[1]+1)^2}+\frac {c_1}{(K[1]+1)^2},y(x)=-x K[1]^2-\sqrt {K[1]^2+1}\right \},\{y(x),K[1]\}\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*Derivative(y(x), x)**2 + sqrt(Derivative(y(x), x)**2 + 1) + y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out