Internal
problem
ID
[10538]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
linear
first
order
Problem
number
:
537
Date
solved
:
Sunday, March 30, 2025 at 05:48:39 PM
CAS
classification
:
[[_1st_order, _with_linear_symmetries]]
ode:=x^3*diff(y(x),x)^3-3*x^2*y(x)*diff(y(x),x)^2+(3*x*y(x)^2+x^6)*diff(y(x),x)-y(x)^3-2*x^5*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=-2*x^5*y[x] - y[x]^3 + (x^6 + 3*x*y[x]^2)*D[y[x],x] - 3*x^2*y[x]*D[y[x],x]^2 + x^3*D[y[x],x]^3==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-2*x**5*y(x) + x**3*Derivative(y(x), x)**3 - 3*x**2*y(x)*Derivative(y(x), x)**2 + (x**6 + 3*x*y(x)**2)*Derivative(y(x), x) - y(x)**3,0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out