60.1.513 problem 526

Internal problem ID [10527]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, linear first order
Problem number : 526
Date solved : Sunday, March 30, 2025 at 05:45:00 PM
CAS classification : [_quadrature]

\begin{align*} {y^{\prime }}^{3}-\left (y^{2}+x y+x^{2}\right ) {y^{\prime }}^{2}+\left (x y^{3}+x^{2} y^{2}+x^{3} y\right ) y^{\prime }-x^{3} y^{3}&=0 \end{align*}

Maple. Time used: 0.004 (sec). Leaf size: 32
ode:=diff(y(x),x)^3-(x^2+x*y(x)+y(x)^2)*diff(y(x),x)^2+(x*y(x)^3+x^2*y(x)^2+x^3*y(x))*diff(y(x),x)-x^3*y(x)^3 = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {x^{3}}{3}+c_1 \\ y &= \frac {1}{-x +c_1} \\ y &= c_1 \,{\mathrm e}^{\frac {x^{2}}{2}} \\ \end{align*}
Mathematica. Time used: 0.147 (sec). Leaf size: 48
ode=-(x^3*y[x]^3) + (x^3*y[x] + x^2*y[x]^2 + x*y[x]^3)*D[y[x],x] - (x^2 + x*y[x] + y[x]^2)*D[y[x],x]^2 + D[y[x],x]^3==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\frac {1}{x+c_1} \\ y(x)\to c_1 e^{\frac {x^2}{2}} \\ y(x)\to \frac {x^3}{3}+c_1 \\ y(x)\to 0 \\ \end{align*}
Sympy. Time used: 0.422 (sec). Leaf size: 27
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x**3*y(x)**3 - (x**2 + x*y(x) + y(x)**2)*Derivative(y(x), x)**2 + (x**3*y(x) + x**2*y(x)**2 + x*y(x)**3)*Derivative(y(x), x) + Derivative(y(x), x)**3,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = C_{1} + \frac {x^{3}}{3}, \ y{\left (x \right )} = - \frac {1}{C_{1} + x}, \ y{\left (x \right )} = C_{1} e^{\frac {x^{2}}{2}}\right ] \]