60.1.507 problem 520

Internal problem ID [10521]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, linear first order
Problem number : 520
Date solved : Sunday, March 30, 2025 at 05:43:03 PM
CAS classification : [_quadrature]

\begin{align*} {y^{\prime }}^{3}+y^{\prime }-y&=0 \end{align*}

Maple. Time used: 0.030 (sec). Leaf size: 210
ode:=diff(y(x),x)^3+diff(y(x),x)-y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} x -6 \int _{}^{y}\frac {\left (108 \textit {\_a} +12 \sqrt {81 \textit {\_a}^{2}+12}\right )^{{1}/{3}}}{\left (108 \textit {\_a} +12 \sqrt {81 \textit {\_a}^{2}+12}\right )^{{2}/{3}}-12}d \textit {\_a} -c_1 &= 0 \\ \frac {12 \int _{}^{y}\frac {\left (108 \textit {\_a} +12 \sqrt {81 \textit {\_a}^{2}+12}\right )^{{1}/{3}}}{\left (108 \textit {\_a} +12 \sqrt {81 \textit {\_a}^{2}+12}\right )^{{2}/{3}}+6+6 i \sqrt {3}}d \textit {\_a} +i \left (x -c_1 \right ) \sqrt {3}+x -c_1}{1+i \sqrt {3}} &= 0 \\ \frac {-12 \int _{}^{y}\frac {\left (108 \textit {\_a} +12 \sqrt {81 \textit {\_a}^{2}+12}\right )^{{1}/{3}}}{\left (108 \textit {\_a} +12 \sqrt {81 \textit {\_a}^{2}+12}\right )^{{2}/{3}}+6-6 i \sqrt {3}}d \textit {\_a} +i \left (x -c_1 \right ) \sqrt {3}-x +c_1}{i \sqrt {3}-1} &= 0 \\ \end{align*}
Mathematica. Time used: 0.483 (sec). Leaf size: 335
ode=-y[x] + D[y[x],x] + D[y[x],x]^3==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \text {InverseFunction}\left [\int \frac {\sqrt [3]{\sqrt {729 \text {$\#$1}^2+108}-27 \text {$\#$1}}}{2^{2/3} \left (\sqrt {729 \text {$\#$1}^2+108}-27 \text {$\#$1}\right )^{2/3}-6 \sqrt [3]{2}}d\text {$\#$1}\&\right ]\left [-\frac {x}{6}+c_1\right ] \\ y(x)\to \text {InverseFunction}\left [\int \frac {\sqrt [3]{\sqrt {729 \text {$\#$1}^2+108}-27 \text {$\#$1}}}{-i 2^{2/3} \sqrt {3} \left (\sqrt {729 \text {$\#$1}^2+108}-27 \text {$\#$1}\right )^{2/3}+2^{2/3} \left (\sqrt {729 \text {$\#$1}^2+108}-27 \text {$\#$1}\right )^{2/3}-6 i \sqrt [3]{2} \sqrt {3}-6 \sqrt [3]{2}}d\text {$\#$1}\&\right ]\left [\frac {x}{12}+c_1\right ] \\ y(x)\to \text {InverseFunction}\left [\int \frac {\sqrt [3]{\sqrt {729 \text {$\#$1}^2+108}-27 \text {$\#$1}}}{i 2^{2/3} \sqrt {3} \left (\sqrt {729 \text {$\#$1}^2+108}-27 \text {$\#$1}\right )^{2/3}+2^{2/3} \left (\sqrt {729 \text {$\#$1}^2+108}-27 \text {$\#$1}\right )^{2/3}+6 i \sqrt [3]{2} \sqrt {3}-6 \sqrt [3]{2}}d\text {$\#$1}\&\right ]\left [\frac {x}{12}+c_1\right ] \\ y(x)\to 0 \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-y(x) + Derivative(y(x), x)**3 + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out