60.1.500 problem 513

Internal problem ID [10514]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, linear first order
Problem number : 513
Date solved : Sunday, March 30, 2025 at 05:39:24 PM
CAS classification : [`y=_G(x,y')`]

\begin{align*} {y^{\prime }}^{2} \sin \left (y\right )+2 x y^{\prime } \cos \left (y\right )^{3}-\sin \left (y\right ) \cos \left (y\right )^{4}&=0 \end{align*}

Maple
ode:=diff(y(x),x)^2*sin(y(x))+2*x*diff(y(x),x)*cos(y(x))^3-sin(y(x))*cos(y(x))^4 = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ \text {No solution found} \]
Mathematica. Time used: 1.657 (sec). Leaf size: 135
ode=-(Cos[y[x]]^4*Sin[y[x]]) + 2*x*Cos[y[x]]^3*D[y[x],x] + Sin[y[x]]*D[y[x],x]^2==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\arctan \left (2 \sqrt {c_1} \sqrt {x+c_1}\right ) \\ y(x)\to \arctan \left (2 \sqrt {c_1} \sqrt {x+c_1}\right ) \\ y(x)\to -\frac {\pi }{2} \\ y(x)\to \frac {\pi }{2} \\ y(x)\to -\arccos \left (-\frac {1}{\sqrt {1-x^2}}\right ) \\ y(x)\to \arccos \left (-\frac {1}{\sqrt {1-x^2}}\right ) \\ y(x)\to -\arccos \left (\frac {1}{\sqrt {1-x^2}}\right ) \\ y(x)\to \arccos \left (\frac {1}{\sqrt {1-x^2}}\right ) \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*x*cos(y(x))**3*Derivative(y(x), x) - sin(y(x))*cos(y(x))**4 + sin(y(x))*Derivative(y(x), x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out