60.1.495 problem 508

Internal problem ID [10509]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, linear first order
Problem number : 508
Date solved : Sunday, March 30, 2025 at 05:32:37 PM
CAS classification : [`y=_G(x,y')`]

\begin{align*} \left (y^{4}+x^{2} y^{2}-x^{2}\right ) {y^{\prime }}^{2}+2 x y y^{\prime }-y^{2}&=0 \end{align*}

Maple. Time used: 0.272 (sec). Leaf size: 62
ode:=(y(x)^4+x^2*y(x)^2-x^2)*diff(y(x),x)^2+2*x*y(x)*diff(y(x),x)-y(x)^2 = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= -i x \\ y &= i x \\ y &= 0 \\ y &= -\operatorname {arctanh}\left (\operatorname {RootOf}\left (\operatorname {arctanh}\left (\textit {\_Z} \right )^{2} \textit {\_Z}^{2}-2 \,\operatorname {arctanh}\left (\textit {\_Z} \right ) c_1 \,\textit {\_Z}^{2}+c_1^{2} \textit {\_Z}^{2}+\textit {\_Z}^{2} x^{2}-x^{2}\right )\right )+c_1 \\ \end{align*}
Mathematica. Time used: 1.334 (sec). Leaf size: 104
ode=-y[x]^2 + 2*x*y[x]*D[y[x],x] + (-x^2 + x^2*y[x]^2 + y[x]^4)*D[y[x],x]^2==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [-\frac {\sqrt {x^2+y(x)^2} y(x) \log (y(x))}{x^2 \sqrt {\frac {y(x)^2 \left (x^2+y(x)^2\right )}{x^4}}}+\frac {\sqrt {x^2+y(x)^2} y(x) \log \left (\sqrt {x^2+y(x)^2}+x\right )}{x^2 \sqrt {\frac {y(x)^2 \left (x^2+y(x)^2\right )}{x^4}}}+y(x)=c_1,y(x)\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*x*y(x)*Derivative(y(x), x) + (x**2*y(x)**2 - x**2 + y(x)**4)*Derivative(y(x), x)**2 - y(x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out