60.1.491 problem 504

Internal problem ID [10505]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, linear first order
Problem number : 504
Date solved : Sunday, March 30, 2025 at 05:30:40 PM
CAS classification : [_rational]

\begin{align*} x y^{2} {y^{\prime }}^{2}-\left (y^{3}+x^{3}-a \right ) y^{\prime }+x^{2} y&=0 \end{align*}

Maple. Time used: 0.243 (sec). Leaf size: 247
ode:=x*y(x)^2*diff(y(x),x)^2-(y(x)^3+x^3-a)*diff(y(x),x)+x^2*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \left (x^{3}+a -2 x \sqrt {a x}\right )^{{1}/{3}} \\ y &= \left (x^{3}+a +2 x \sqrt {a x}\right )^{{1}/{3}} \\ y &= -\frac {\left (x^{3}+a -2 x \sqrt {a x}\right )^{{1}/{3}} \left (1+i \sqrt {3}\right )}{2} \\ y &= \frac {\left (x^{3}+a -2 x \sqrt {a x}\right )^{{1}/{3}} \left (-1+i \sqrt {3}\right )}{2} \\ y &= -\frac {\left (x^{3}+a +2 x \sqrt {a x}\right )^{{1}/{3}} \left (1+i \sqrt {3}\right )}{2} \\ y &= \frac {\left (x^{3}+a +2 x \sqrt {a x}\right )^{{1}/{3}} \left (-1+i \sqrt {3}\right )}{2} \\ y &= 0 \\ \int _{\textit {\_b}}^{y}\frac {\textit {\_a}^{2}}{\sqrt {\textit {\_a}^{6}+\left (-2 x^{3}-2 a \right ) \textit {\_a}^{3}+\left (-x^{3}+a \right )^{2}}}d \textit {\_a} +\frac {\ln \left (x \right )}{2}-c_1 &= 0 \\ \int _{\textit {\_b}}^{y}\frac {\textit {\_a}^{2}}{\sqrt {\textit {\_a}^{6}+\left (-2 x^{3}-2 a \right ) \textit {\_a}^{3}+\left (-x^{3}+a \right )^{2}}}d \textit {\_a} -\frac {\ln \left (x \right )}{2}-c_1 &= 0 \\ \end{align*}
Mathematica. Time used: 0.749 (sec). Leaf size: 194
ode=x^2*y[x] - (-a + x^3 + y[x]^3)*D[y[x],x] + x*y[x]^2*D[y[x],x]^2==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \frac {\sqrt [3]{a+(-1+c_1) x^3}}{\sqrt [3]{1-\frac {1}{c_1}}} \\ y(x)\to 0 \\ y(x)\to \sqrt [3]{\left (\sqrt {a}-x^{3/2}\right )^2} \\ y(x)\to -\sqrt [3]{-1} \sqrt [3]{\left (\sqrt {a}-x^{3/2}\right )^2} \\ y(x)\to (-1)^{2/3} \sqrt [3]{\left (\sqrt {a}-x^{3/2}\right )^2} \\ y(x)\to \sqrt [3]{\left (\sqrt {a}+x^{3/2}\right )^2} \\ y(x)\to -\sqrt [3]{-1} \sqrt [3]{\left (\sqrt {a}+x^{3/2}\right )^2} \\ y(x)\to (-1)^{2/3} \sqrt [3]{\left (\sqrt {a}+x^{3/2}\right )^2} \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
y = Function("y") 
ode = Eq(x**2*y(x) + x*y(x)**2*Derivative(y(x), x)**2 - (-a + x**3 + y(x)**3)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out