60.1.482 problem 495

Internal problem ID [10496]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, linear first order
Problem number : 495
Date solved : Sunday, March 30, 2025 at 05:11:48 PM
CAS classification : [[_homogeneous, `class A`], _dAlembert]

\begin{align*} \left (y^{2}+\left (1-a \right ) x^{2}\right ) {y^{\prime }}^{2}+2 a x y y^{\prime }+\left (1-a \right ) y^{2}+x^{2}&=0 \end{align*}

Maple. Time used: 0.436 (sec). Leaf size: 73
ode:=(y(x)^2+(-a+1)*x^2)*diff(y(x),x)^2+2*a*x*y(x)*diff(y(x),x)+(-a+1)*y(x)^2+x^2 = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= -i x \\ y &= i x \\ y &= \tan \left (\operatorname {RootOf}\left (-2 \textit {\_Z} \sqrt {a -1}-\ln \left (x^{2} \sec \left (\textit {\_Z} \right )^{2}\right )+2 c_1 \right )\right ) x \\ y &= \tan \left (\operatorname {RootOf}\left (2 \textit {\_Z} \sqrt {a -1}-\ln \left (x^{2} \sec \left (\textit {\_Z} \right )^{2}\right )+2 c_1 \right )\right ) x \\ \end{align*}
Mathematica. Time used: 0.31 (sec). Leaf size: 125
ode=x^2 + (1 - a)*y[x]^2 + 2*a*x*y[x]*D[y[x],x] + ((1 - a)*x^2 + y[x]^2)*D[y[x],x]^2==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} \text {Solve}\left [\int _1^{\frac {y(x)}{x}}\frac {-K[1]^2+a-1}{\left (\sqrt {a-1}-K[1]\right ) \left (K[1]^2+1\right )}dK[1]&=-\log (x)+c_1,y(x)\right ] \\ \text {Solve}\left [\int _1^{\frac {y(x)}{x}}\frac {-K[2]^2+a-1}{\left (K[2]+\sqrt {a-1}\right ) \left (K[2]^2+1\right )}dK[2]&=\log (x)+c_1,y(x)\right ] \\ y(x)\to -i x \\ y(x)\to i x \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
y = Function("y") 
ode = Eq(2*a*x*y(x)*Derivative(y(x), x) + x**2 + (1 - a)*y(x)**2 + (x**2*(1 - a) + y(x)**2)*Derivative(y(x), x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
RecursionError : maximum recursion depth exceeded