60.1.479 problem 492

Internal problem ID [10493]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, linear first order
Problem number : 492
Date solved : Sunday, March 30, 2025 at 05:10:19 PM
CAS classification : [_quadrature]

\begin{align*} \left (y^{2}-a^{2}\right ) {y^{\prime }}^{2}+y^{2}&=0 \end{align*}

Maple. Time used: 0.079 (sec). Leaf size: 115
ode:=(y(x)^2-a^2)*diff(y(x),x)^2+y(x)^2 = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= 0 \\ a \,\operatorname {csgn}\left (a \right ) \ln \left (\frac {a \left (\sqrt {-y^{2}+a^{2}}\, \operatorname {csgn}\left (a \right )+a \right )}{y}\right )+a \,\operatorname {csgn}\left (a \right ) \ln \left (2\right )-\sqrt {-y^{2}+a^{2}}-c_1 +x &= 0 \\ -a \,\operatorname {csgn}\left (a \right ) \ln \left (\frac {a \left (\sqrt {-y^{2}+a^{2}}\, \operatorname {csgn}\left (a \right )+a \right )}{y}\right )-a \,\operatorname {csgn}\left (a \right ) \ln \left (2\right )+\sqrt {-y^{2}+a^{2}}-c_1 +x &= 0 \\ \end{align*}
Mathematica. Time used: 0.334 (sec). Leaf size: 102
ode=y[x]^2 + (-a^2 + y[x]^2)*D[y[x],x]^2==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \text {InverseFunction}\left [\sqrt {a^2-\text {$\#$1}^2}-a \text {arctanh}\left (\frac {\sqrt {a^2-\text {$\#$1}^2}}{a}\right )\&\right ][-x+c_1] \\ y(x)\to \text {InverseFunction}\left [\sqrt {a^2-\text {$\#$1}^2}-a \text {arctanh}\left (\frac {\sqrt {a^2-\text {$\#$1}^2}}{a}\right )\&\right ][x+c_1] \\ y(x)\to 0 \\ \end{align*}
Sympy. Time used: 4.366 (sec). Leaf size: 41
from sympy import * 
x = symbols("x") 
a = symbols("a") 
y = Function("y") 
ode = Eq((-a**2 + y(x)**2)*Derivative(y(x), x)**2 + y(x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ \int \limits ^{y{\left (x \right )}} \frac {1}{y \sqrt {\frac {1}{- y^{2} + a^{2}}}}\, dy = C_{1} - x, \ \int \limits ^{y{\left (x \right )}} \frac {1}{y \sqrt {\frac {1}{- y^{2} + a^{2}}}}\, dy = C_{1} + x\right ] \]