60.1.460 problem 473

Internal problem ID [10474]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, linear first order
Problem number : 473
Date solved : Sunday, March 30, 2025 at 04:51:10 PM
CAS classification : [[_homogeneous, `class C`], _dAlembert]

\begin{align*} \left (y-2 x \right ) {y^{\prime }}^{2}-2 \left (x -1\right ) y^{\prime }+y-2&=0 \end{align*}

Maple. Time used: 0.825 (sec). Leaf size: 71
ode:=(y(x)-2*x)*diff(y(x),x)^2-2*(x-1)*diff(y(x),x)+y(x)-2 = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= -\sqrt {2}\, x +\sqrt {2}+x +1 \\ y &= \left (x -1\right ) \sqrt {2}+x +1 \\ y &= 2+\frac {c_1}{2}-\frac {\sqrt {c_1 \left (-c_1 +4 x -4\right )}}{2} \\ y &= 2+c_1 -\sqrt {c_1 \left (-c_1 +2 x -2\right )} \\ \end{align*}
Mathematica. Time used: 4.209 (sec). Leaf size: 187
ode=-2 + y[x] - 2*(-1 + x)*D[y[x],x] + (-2*x + y[x])*D[y[x],x]^2==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\frac {1}{2} \sqrt {-e^{c_1} \left (4 x-4+e^{c_1}\right )}+2-\frac {e^{c_1}}{2} \\ y(x)\to \frac {1}{2} \left (\sqrt {-e^{c_1} \left (4 x-4+e^{c_1}\right )}+4-e^{c_1}\right ) \\ y(x)\to -\sqrt {-e^{c_1} \left (2 x-2+e^{c_1}\right )}+2-e^{c_1} \\ y(x)\to \sqrt {-e^{c_1} \left (2 x-2+e^{c_1}\right )}+2-e^{c_1} \\ y(x)\to 2 \\ y(x)\to x-\sqrt {2} \sqrt {(x-1)^2}+1 \\ y(x)\to x+\sqrt {2} \sqrt {(x-1)^2}+1 \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((-2*x + y(x))*Derivative(y(x), x)**2 - (2*x - 2)*Derivative(y(x), x) + y(x) - 2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out