60.1.456 problem 469

Internal problem ID [10470]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, linear first order
Problem number : 469
Date solved : Sunday, March 30, 2025 at 04:50:59 PM
CAS classification : [[_homogeneous, `class A`], _rational, _dAlembert]

\begin{align*} y {y^{\prime }}^{2}+a x y^{\prime }+b y&=0 \end{align*}

Maple. Time used: 0.134 (sec). Leaf size: 108
ode:=y(x)*diff(y(x),x)^2+a*x*diff(y(x),x)+b*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= 0 \\ y &= \operatorname {RootOf}\left (-2 \ln \left (x \right )-\int _{}^{\textit {\_Z}}\frac {2 \textit {\_a}^{2}+\sqrt {-4 \textit {\_a}^{2} b +a^{2}}+a}{\textit {\_a} \left (\textit {\_a}^{2}+a +b \right )}d \textit {\_a} +2 c_1 \right ) x \\ y &= \operatorname {RootOf}\left (-2 \ln \left (x \right )+\int _{}^{\textit {\_Z}}-\frac {2 \textit {\_a}^{2}+a -\sqrt {-4 \textit {\_a}^{2} b +a^{2}}}{\textit {\_a} \left (\textit {\_a}^{2}+a +b \right )}d \textit {\_a} +2 c_1 \right ) x \\ \end{align*}
Mathematica. Time used: 0.646 (sec). Leaf size: 162
ode=b*y[x] + a*x*D[y[x],x] + y[x]*D[y[x],x]^2==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} \text {Solve}\left [\frac {a \log \left (\sqrt {a^2-\frac {4 b y(x)^2}{x^2}}+a\right )+(a+2 b) \log \left (\sqrt {a^2-\frac {4 b y(x)^2}{x^2}}-a-2 b\right )}{4 (a+b)}&=-\frac {\log (x)}{2}+c_1,y(x)\right ] \\ \text {Solve}\left [\frac {a \log \left (\sqrt {a^2-\frac {4 b y(x)^2}{x^2}}-a\right )+(a+2 b) \log \left (\sqrt {a^2-\frac {4 b y(x)^2}{x^2}}+a+2 b\right )}{4 (a+b)}&=-\frac {\log (x)}{2}+c_1,y(x)\right ] \\ y(x)\to 0 \\ \end{align*}
Sympy. Time used: 76.613 (sec). Leaf size: 214
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
y = Function("y") 
ode = Eq(a*x*Derivative(y(x), x) + b*y(x) + y(x)*Derivative(y(x), x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ \log {\left (x \right )} = C_{1} + \begin {cases} - \log {\left (\left (\left (a + \sqrt {a^{2} - \frac {4 b y^{2}{\left (x \right )}}{x^{2}}}\right )^{\frac {a b}{2 \left (a + b\right )}} \left (a + 2 b - \sqrt {a^{2} - \frac {4 b y^{2}{\left (x \right )}}{x^{2}}}\right )^{\frac {b \left (a + 2 b\right )}{2 \left (a + b\right )}}\right )^{\frac {1}{b}} \right )} & \text {for}\: b \neq 0 \\- \log {\left (\sqrt {2 a + 2 \sqrt {a^{2}} + \frac {4 y^{2}{\left (x \right )}}{x^{2}}} \right )} & \text {otherwise} \end {cases}, \ \log {\left (x \right )} = C_{1} + \begin {cases} - \log {\left (\left (\left (a - \sqrt {a^{2} - \frac {4 b y^{2}{\left (x \right )}}{x^{2}}}\right )^{\frac {a b}{2 \left (a + b\right )}} \left (a + 2 b + \sqrt {a^{2} - \frac {4 b y^{2}{\left (x \right )}}{x^{2}}}\right )^{\frac {b \left (a + 2 b\right )}{2 \left (a + b\right )}}\right )^{\frac {1}{b}} \right )} & \text {for}\: b \neq 0 \\- \log {\left (\sqrt {2 a - 2 \sqrt {a^{2}} + \frac {4 y^{2}{\left (x \right )}}{x^{2}}} \right )} & \text {otherwise} \end {cases}\right ] \]