60.1.436 problem 448

Internal problem ID [10450]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, linear first order
Problem number : 448
Date solved : Sunday, March 30, 2025 at 04:45:10 PM
CAS classification : [_rational, [_1st_order, `_with_symmetry_[F(x),G(x)*y+H(x)]`]]

\begin{align*} \left (x^{2}-1\right ) {y^{\prime }}^{2}-y^{2}+1&=0 \end{align*}

Maple. Time used: 44.232 (sec). Leaf size: 3373
ode:=(x^2-1)*diff(y(x),x)^2-y(x)^2+1 = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} \text {Solution too large to show}\end{align*}

Mathematica. Time used: 0.267 (sec). Leaf size: 98
ode=1 - y[x]^2 + (-1 + x^2)*D[y[x],x]^2==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \frac {1}{2} e^{-c_1} \left (\left (1+e^{2 c_1}\right ) x-\left (-1+e^{2 c_1}\right ) \sqrt {x^2-1}\right ) \\ y(x)\to \frac {1}{2} e^{-c_1} \left (\left (-1+e^{2 c_1}\right ) \sqrt {x^2-1}+\left (1+e^{2 c_1}\right ) x\right ) \\ y(x)\to -1 \\ y(x)\to 1 \\ \end{align*}
Sympy. Time used: 22.230 (sec). Leaf size: 112
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((x**2 - 1)*Derivative(y(x), x)**2 - y(x)**2 + 1,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ - \begin {cases} 0 & \text {for}\: y{\left (x \right )} > -1 \wedge y{\left (x \right )} < 1 \end {cases} + \log {\left (\sqrt {y^{2}{\left (x \right )} - 1} + y{\left (x \right )} \right )} + \frac {\int \sqrt {\frac {y^{2}{\left (x \right )} - 1}{x^{2} - 1}}\, dx}{\sqrt {\left (y{\left (x \right )} - 1\right ) \left (y{\left (x \right )} + 1\right )}} = C_{1}, \ - \begin {cases} 0 & \text {for}\: y{\left (x \right )} > -1 \wedge y{\left (x \right )} < 1 \end {cases} + \log {\left (\sqrt {y^{2}{\left (x \right )} - 1} + y{\left (x \right )} \right )} - \frac {\int \sqrt {\frac {y^{2}{\left (x \right )} - 1}{x^{2} - 1}}\, dx}{\sqrt {\left (y{\left (x \right )} - 1\right ) \left (y{\left (x \right )} + 1\right )}} = C_{1}\right ] \]