7.5.19 problem 19

Internal problem ID [123]
Book : Elementary Differential Equations. By C. Henry Edwards, David E. Penney and David Calvis. 6th edition. 2008
Section : Chapter 1. First order differential equations. Section 1.6 (substitution and exact equations). Problems at page 72
Problem number : 19
Date solved : Saturday, March 29, 2025 at 04:33:29 PM
CAS classification : [[_homogeneous, `class G`], _rational, _Bernoulli]

\begin{align*} x^{2} y^{\prime }+2 x y&=5 y^{3} \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 50
ode:=x^2*diff(y(x),x)+2*x*y(x) = 5*y(x)^3; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {\sqrt {\left (c_1 \,x^{5}+2\right ) x}}{c_1 \,x^{5}+2} \\ y &= -\frac {\sqrt {\left (c_1 \,x^{5}+2\right ) x}}{c_1 \,x^{5}+2} \\ \end{align*}
Mathematica. Time used: 0.599 (sec). Leaf size: 51
ode=x^2*D[y[x],x]+2*x*y[x]==5*y[x]^3; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\frac {\sqrt {x}}{\sqrt {2+c_1 x^5}} \\ y(x)\to \frac {\sqrt {x}}{\sqrt {2+c_1 x^5}} \\ y(x)\to 0 \\ \end{align*}
Sympy. Time used: 0.613 (sec). Leaf size: 29
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), x) + 2*x*y(x) - 5*y(x)**3,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = - \sqrt {\frac {x}{C_{1} x^{5} + 2}}, \ y{\left (x \right )} = \sqrt {\frac {x}{C_{1} x^{5} + 2}}\right ] \]