60.1.405 problem 416

Internal problem ID [10419]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, linear first order
Problem number : 416
Date solved : Sunday, March 30, 2025 at 04:41:17 PM
CAS classification : [[_homogeneous, `class A`], _rational, _dAlembert]

\begin{align*} x {y^{\prime }}^{2}+\left (y-3 x \right ) y^{\prime }+y&=0 \end{align*}

Maple. Time used: 0.039 (sec). Leaf size: 140
ode:=x*diff(y(x),x)^2+(y(x)-3*x)*diff(y(x),x)+y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= x \\ -\frac {c_1 \left (5 x -y+\sqrt {9 x^{2}-10 y x +y^{2}}\right )}{x {\left (\frac {3 x -y+\sqrt {9 x^{2}-10 y x +y^{2}}}{x}\right )}^{{3}/{2}}}+x &= 0 \\ \frac {\left (-5 x +y+\sqrt {9 x^{2}-10 y x +y^{2}}\right ) c_1 \sqrt {2}}{4 x {\left (\frac {-y+3 x -\sqrt {9 x^{2}-10 y x +y^{2}}}{x}\right )}^{{3}/{2}}}+x &= 0 \\ \end{align*}
Mathematica. Time used: 60.13 (sec). Leaf size: 1221
ode=y[x] + (-3*x + y[x])*D[y[x],x] + x*D[y[x],x]^2==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} \text {Solution too large to show}\end{align*}

Sympy. Time used: 53.587 (sec). Leaf size: 197
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*Derivative(y(x), x)**2 + (-3*x + y(x))*Derivative(y(x), x) + y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = C_{1} e^{\int \limits ^{\frac {x}{y{\left (x \right )}}} \frac {1}{u_{1} \left (3 u_{1} - \sqrt {9 u_{1}^{2} - 10 u_{1} + 1} - 3\right )}\, du_{1} + \int \limits ^{\frac {x}{y{\left (x \right )}}} \frac {\sqrt {9 u_{1}^{2} - 10 u_{1} + 1}}{u_{1} \left (3 u_{1} - \sqrt {9 u_{1}^{2} - 10 u_{1} + 1} - 3\right )}\, du_{1} - 3 \int \limits ^{\frac {x}{y{\left (x \right )}}} \frac {1}{3 u_{1} - \sqrt {9 u_{1}^{2} - 10 u_{1} + 1} - 3}\, du_{1}}, \ y{\left (x \right )} = C_{1} e^{\int \limits ^{\frac {x}{y{\left (x \right )}}} \frac {1}{u_{1} \left (3 u_{1} + \sqrt {9 u_{1}^{2} - 10 u_{1} + 1} - 3\right )}\, du_{1} - \int \limits ^{\frac {x}{y{\left (x \right )}}} \frac {\sqrt {9 u_{1}^{2} - 10 u_{1} + 1}}{u_{1} \left (3 u_{1} + \sqrt {9 u_{1}^{2} - 10 u_{1} + 1} - 3\right )}\, du_{1} - 3 \int \limits ^{\frac {x}{y{\left (x \right )}}} \frac {1}{3 u_{1} + \sqrt {9 u_{1}^{2} - 10 u_{1} + 1} - 3}\, du_{1}}\right ] \]