60.1.401 problem 412

Internal problem ID [10415]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, linear first order
Problem number : 412
Date solved : Sunday, March 30, 2025 at 04:41:03 PM
CAS classification : [[_homogeneous, `class G`], _dAlembert]

\begin{align*} x {y^{\prime }}^{2}+y y^{\prime }+a&=0 \end{align*}

Maple. Time used: 0.035 (sec). Leaf size: 177
ode:=x*diff(y(x),x)^2+y(x)*diff(y(x),x)+a = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} -\frac {8 x \left (-\frac {3 c_1 \left (y-\sqrt {-4 x a +y^{2}}\right ) \sqrt {\frac {-y+\sqrt {-4 x a +y^{2}}}{x}}}{8}+x a -\frac {3 y^{2}}{4}+\frac {3 y \sqrt {-4 x a +y^{2}}}{4}\right )}{3 \left (y-\sqrt {-4 x a +y^{2}}\right )^{2}} &= 0 \\ -\frac {8 x \left (\frac {3 c_1 \left (y+\sqrt {-4 x a +y^{2}}\right ) \sqrt {\frac {-2 y-2 \sqrt {-4 x a +y^{2}}}{x}}}{4}+x a -\frac {3 y^{2}}{4}-\frac {3 y \sqrt {-4 x a +y^{2}}}{4}\right )}{3 \left (y+\sqrt {-4 x a +y^{2}}\right )^{2}} &= 0 \\ \end{align*}
Mathematica. Time used: 60.269 (sec). Leaf size: 4845
ode=a + y[x]*D[y[x],x] + x*D[y[x],x]^2==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Too large to display

Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
y = Function("y") 
ode = Eq(a + x*Derivative(y(x), x)**2 + y(x)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out