60.1.395 problem 406

Internal problem ID [10409]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, linear first order
Problem number : 406
Date solved : Sunday, March 30, 2025 at 04:39:08 PM
CAS classification : [_dAlembert]

\begin{align*} a {y^{\prime }}^{2}-y y^{\prime }-x&=0 \end{align*}

Maple. Time used: 0.043 (sec). Leaf size: 246
ode:=a*diff(y(x),x)^2-y(x)*diff(y(x),x)-x = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} \frac {-\frac {\sqrt {2}\, \left (y+\sqrt {4 a x +y^{2}}\right ) \operatorname {arcsinh}\left (\frac {y+\sqrt {4 a x +y^{2}}}{2 a}\right )}{2}+x \sqrt {\frac {y \sqrt {4 a x +y^{2}}+2 a^{2}+2 a x +y^{2}}{a^{2}}}+c_1 y+c_1 \sqrt {4 a x +y^{2}}}{\sqrt {\frac {y \sqrt {4 a x +y^{2}}+y^{2}+2 a \left (a +x \right )}{a^{2}}}} &= 0 \\ \frac {x \sqrt {\frac {-2 y \sqrt {4 a x +y^{2}}+2 y^{2}+4 a \left (a +x \right )}{a^{2}}}-\left (y-\sqrt {4 a x +y^{2}}\right ) \left (-\operatorname {arcsinh}\left (\frac {-y+\sqrt {4 a x +y^{2}}}{2 a}\right )+c_1 \right )}{\sqrt {\frac {-2 y \sqrt {4 a x +y^{2}}+2 y^{2}+4 a \left (a +x \right )}{a^{2}}}} &= 0 \\ \end{align*}
Mathematica. Time used: 0.313 (sec). Leaf size: 117
ode=-x - y[x]*D[y[x],x] + a*D[y[x],x]^2==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\left \{x=a \exp \left (\int _1^{K[1]}\frac {1}{K[2]^2 \left (K[2]+\frac {1}{K[2]}\right )}dK[2]\right ) \int \frac {\exp \left (-\int _1^{K[1]}\frac {1}{K[2]^2 \left (K[2]+\frac {1}{K[2]}\right )}dK[2]\right )}{K[1]+\frac {1}{K[1]}} \, dK[1]+c_1 \exp \left (\int _1^{K[1]}\frac {1}{K[2]^2 \left (K[2]+\frac {1}{K[2]}\right )}dK[2]\right ),y(x)=a K[1]-\frac {x}{K[1]}\right \},\{y(x),K[1]\}\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
y = Function("y") 
ode = Eq(a*Derivative(y(x), x)**2 - x - y(x)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out