60.1.387 problem 398

Internal problem ID [10401]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, linear first order
Problem number : 398
Date solved : Sunday, March 30, 2025 at 04:36:57 PM
CAS classification : [[_1st_order, _with_linear_symmetries]]

\begin{align*} {y^{\prime }}^{2}-3 x y^{{2}/{3}} y^{\prime }+9 y^{{5}/{3}}&=0 \end{align*}

Maple. Time used: 0.106 (sec). Leaf size: 201
ode:=diff(y(x),x)^2-3*x*y(x)^(2/3)*diff(y(x),x)+9*y(x)^(5/3) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {x^{6}}{64} \\ y &= 0 \\ \frac {-x \left (c_1 -y^{{1}/{3}}\right ) \sqrt {y^{{4}/{3}} \left (x^{2}-4 y^{{1}/{3}}\right )}-y^{{2}/{3}} c_1 \,x^{2}+4 y^{{4}/{3}}+\left (-x^{2}+4 c_1 \right ) y}{y^{{2}/{3}} x^{2}+x \sqrt {y^{{4}/{3}} \left (x^{2}-4 y^{{1}/{3}}\right )}-4 y} &= 0 \\ \frac {x \left (c_1 -y^{{1}/{3}}\right ) \sqrt {y^{{4}/{3}} \left (x^{2}-4 y^{{1}/{3}}\right )}-y^{{2}/{3}} c_1 \,x^{2}+4 y^{{4}/{3}}+\left (-x^{2}+4 c_1 \right ) y}{y^{{2}/{3}} x^{2}-x \sqrt {y^{{4}/{3}} \left (x^{2}-4 y^{{1}/{3}}\right )}-4 y} &= 0 \\ \end{align*}
Mathematica. Time used: 9.334 (sec). Leaf size: 418
ode=9*y[x]^(5/3) - 3*x*y[x]^(2/3)*D[y[x],x] + D[y[x],x]^2==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} \text {Solve}\left [\frac {\sqrt {x^2-4 \sqrt [3]{y(x)}} \sqrt {x^2 y(x)^{4/3}-4 y(x)^{5/3}}}{8 y(x)-2 x^2 y(x)^{2/3}}+\frac {\sqrt {\left (x^2-4 \sqrt [3]{y(x)}\right ) y(x)^{4/3}} \log \left (\sqrt {x^2-4 \sqrt [3]{y(x)}}-x\right )}{\sqrt {x^2-4 \sqrt [3]{y(x)}} y(x)^{2/3}}+\log \left (4 y(x)^{4/3}-x^2 y(x)\right )-\log \left (x^2 \left (-y(x)^{2/3}\right )+\sqrt {x^2-4 \sqrt [3]{y(x)}} \sqrt {x^2 y(x)^{4/3}-4 y(x)^{5/3}}+4 y(x)\right )&=c_1,y(x)\right ] \\ \text {Solve}\left [\frac {1}{6} \left (\frac {3 \sqrt {x^2 y(x)^{4/3}-4 y(x)^{5/3}}}{\sqrt {x^2-4 \sqrt [3]{y(x)}} y(x)^{2/3}}+6 \log \left (4 y(x)^{4/3}-x^2 y(x)\right )-6 \log \left (x^2 y(x)^{2/3}+\sqrt {x^2-4 \sqrt [3]{y(x)}} \sqrt {x^2 y(x)^{4/3}-4 y(x)^{5/3}}-4 y(x)\right )\right )-\frac {\sqrt {\left (x^2-4 \sqrt [3]{y(x)}\right ) y(x)^{4/3}} \log \left (\sqrt {x^2-4 \sqrt [3]{y(x)}}-x\right )}{\sqrt {x^2-4 \sqrt [3]{y(x)}} y(x)^{2/3}}&=c_1,y(x)\right ] \\ y(x)\to 0 \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-3*x*y(x)**(2/3)*Derivative(y(x), x) + 9*y(x)**(5/3) + Derivative(y(x), x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out