60.1.379 problem 388

Internal problem ID [10393]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, linear first order
Problem number : 388
Date solved : Sunday, March 30, 2025 at 04:34:40 PM
CAS classification : [_dAlembert]

\begin{align*} {y^{\prime }}^{2}-2 y y^{\prime }-2 x&=0 \end{align*}

Maple. Time used: 0.031 (sec). Leaf size: 219
ode:=diff(y(x),x)^2-2*y(x)*diff(y(x),x)-2*x = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} \frac {\frac {\left (y-\sqrt {y^{2}+2 x}\right ) \operatorname {arcsinh}\left (-y+\sqrt {y^{2}+2 x}\right )}{2}+x \sqrt {2 y^{2}+2 x -2 y \sqrt {y^{2}+2 x}+1}-2 c_1 y+2 c_1 \sqrt {y^{2}+2 x}}{\sqrt {2 y^{2}+2 x -2 y \sqrt {y^{2}+2 x}+1}} &= 0 \\ \frac {-\frac {\left (y+\sqrt {y^{2}+2 x}\right ) \operatorname {arcsinh}\left (y+\sqrt {y^{2}+2 x}\right )}{2}+x \sqrt {2 y^{2}+2 x +2 y \sqrt {y^{2}+2 x}+1}+2 c_1 y+2 c_1 \sqrt {y^{2}+2 x}}{\sqrt {2 y^{2}+2 x +2 y \sqrt {y^{2}+2 x}+1}} &= 0 \\ \end{align*}
Mathematica. Time used: 0.405 (sec). Leaf size: 121
ode=-2*x - 2*y[x]*D[y[x],x] + D[y[x],x]^2==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\left \{x=\frac {1}{2} \exp \left (\int _1^{K[1]}\frac {1}{K[2]^2 \left (K[2]+\frac {1}{K[2]}\right )}dK[2]\right ) \int \frac {\exp \left (-\int _1^{K[1]}\frac {1}{K[2]^2 \left (K[2]+\frac {1}{K[2]}\right )}dK[2]\right )}{K[1]+\frac {1}{K[1]}} \, dK[1]+c_1 \exp \left (\int _1^{K[1]}\frac {1}{K[2]^2 \left (K[2]+\frac {1}{K[2]}\right )}dK[2]\right ),y(x)=\frac {K[1]}{2}-\frac {x}{K[1]}\right \},\{y(x),K[1]\}\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-2*x - 2*y(x)*Derivative(y(x), x) + Derivative(y(x), x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE -sqrt(2*x + y(x)**2) - y(x) + Derivative(y(x), x) cannot be solved by the factorable group method