60.1.345 problem 352

Internal problem ID [10359]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, linear first order
Problem number : 352
Date solved : Sunday, March 30, 2025 at 04:25:03 PM
CAS classification : unknown

\begin{align*} y^{\prime } \left (\cos \left (y\right )-\sin \left (\alpha \right ) \sin \left (x \right )\right ) \cos \left (y\right )+\left (\cos \left (x \right )-\sin \left (\alpha \right ) \sin \left (y\right )\right ) \cos \left (x \right )&=0 \end{align*}

Maple. Time used: 0.046 (sec). Leaf size: 33
ode:=diff(y(x),x)*(cos(y(x))-sin(alpha)*sin(x))*cos(y(x))+(cos(x)-sin(alpha)*sin(y(x)))*cos(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ \frac {\left (-2 \sin \left (\alpha \right ) \sin \left (x \right )+\cos \left (y\right )\right ) \sin \left (y\right )}{2}+\frac {\sin \left (x \right ) \cos \left (x \right )}{2}+\frac {x}{2}+c_1 +\frac {y}{2} = 0 \]
Mathematica. Time used: 0.53 (sec). Leaf size: 162
ode=Cos[x]*(Cos[x] - Sin[\[Alpha]]*Sin[y[x]]) + Cos[y[x]]*(Cos[y[x]] - Sin[\[Alpha]]*Sin[x])*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\int _1^x(-2 \cos (2 K[1])+\cos (\alpha -K[1]-y(x))+\cos (\alpha +K[1]-y(x))-\cos (\alpha -K[1]+y(x))-\cos (\alpha +K[1]+y(x))-2)dK[1]+\int _1^{y(x)}\left (\cos (x-\alpha -K[2])-\cos (x+\alpha -K[2])-2 \cos (2 K[2])+\cos (x-\alpha +K[2])-\cos (x+\alpha +K[2])-\int _1^x(\sin (\alpha -K[1]-K[2])+\sin (\alpha +K[1]-K[2])+\sin (\alpha -K[1]+K[2])+\sin (\alpha +K[1]+K[2]))dK[1]-2\right )dK[2]=c_1,y(x)\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
Alpha = symbols("Alpha") 
y = Function("y") 
ode = Eq((-sin(Alpha)*sin(x) + cos(y(x)))*cos(y(x))*Derivative(y(x), x) + (-sin(Alpha)*sin(y(x)) + cos(x))*cos(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out