Internal
problem
ID
[10353]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
linear
first
order
Problem
number
:
346
Date
solved
:
Sunday, March 30, 2025 at 04:23:05 PM
CAS
classification
:
[`y=_G(x,y')`]
ode:=x*(y(x)*ln(x*y(x))+y(x)-a*x)*diff(y(x),x)-y(x)*(a*x*ln(x*y(x))-y(x)+a*x) = 0; dsolve(ode,y(x), singsol=all);
ode=-((a*x + a*x*Log[x*y[x]] - y[x])*y[x]) + x*(-(a*x) + y[x] + Log[x*y[x]]*y[x])*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") y = Function("y") ode = Eq(x*(-a*x + y(x)*log(x*y(x)) + y(x))*Derivative(y(x), x) - (a*x*log(x*y(x)) + a*x - y(x))*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out