7.5.9 problem 9

Internal problem ID [113]
Book : Elementary Differential Equations. By C. Henry Edwards, David E. Penney and David Calvis. 6th edition. 2008
Section : Chapter 1. First order differential equations. Section 1.6 (substitution and exact equations). Problems at page 72
Problem number : 9
Date solved : Saturday, March 29, 2025 at 04:32:26 PM
CAS classification : [[_homogeneous, `class A`], _rational, _Bernoulli]

\begin{align*} x^{2} y^{\prime }&=x y+y^{2} \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 14
ode:=x^2*diff(y(x),x) = x*y(x)+y(x)^2; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {x}{-\ln \left (x \right )+c_1} \]
Mathematica. Time used: 0.132 (sec). Leaf size: 21
ode=x^2*D[y[x],x]==x*y[x]+y[x]^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \frac {x}{-\log (x)+c_1} \\ y(x)\to 0 \\ \end{align*}
Sympy. Time used: 0.206 (sec). Leaf size: 8
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), x) - x*y(x) - y(x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {x}{C_{1} - \log {\left (x \right )}} \]