60.1.314 problem 320

Internal problem ID [10328]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, linear first order
Problem number : 320
Date solved : Sunday, March 30, 2025 at 04:10:30 PM
CAS classification : [[_1st_order, `_with_symmetry_[F(x)*G(y),0]`]]

\begin{align*} \left (x^{2} y^{3}+x y\right ) y^{\prime }-1&=0 \end{align*}

Maple. Time used: 0.009 (sec). Leaf size: 78
ode:=(x^2*y(x)^3+x*y(x))*diff(y(x),x)-1 = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {\sqrt {2 x^{2} \operatorname {LambertW}\left (\frac {c_1 \,{\mathrm e}^{-\frac {2 x -1}{2 x}}}{2}\right )+2 x^{2}-x}}{x} \\ y &= -\frac {\sqrt {2 x^{2} \operatorname {LambertW}\left (\frac {c_1 \,{\mathrm e}^{-\frac {2 x -1}{2 x}}}{2}\right )+2 x^{2}-x}}{x} \\ \end{align*}
Mathematica. Time used: 0.127 (sec). Leaf size: 76
ode=-1 + (x*y[x] + x^2*y[x]^3)*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\frac {\sqrt {2 x W\left (c_1 e^{\frac {1}{2 x}-1}\right )+2 x-1}}{\sqrt {x}} \\ y(x)\to \frac {\sqrt {2 x W\left (c_1 e^{\frac {1}{2 x}-1}\right )+2 x-1}}{\sqrt {x}} \\ \end{align*}
Sympy. Time used: 1.421 (sec). Leaf size: 31
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((x**2*y(x)**3 + x*y(x))*Derivative(y(x), x) - 1,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ C_{1} - \left (y^{2}{\left (x \right )} - 2\right ) \sqrt {e^{y^{2}{\left (x \right )}}} - \frac {\sqrt {e^{y^{2}{\left (x \right )}}}}{x} = 0 \]