7.5.7 problem 7

Internal problem ID [111]
Book : Elementary Differential Equations. By C. Henry Edwards, David E. Penney and David Calvis. 6th edition. 2008
Section : Chapter 1. First order differential equations. Section 1.6 (substitution and exact equations). Problems at page 72
Problem number : 7
Date solved : Saturday, March 29, 2025 at 04:32:08 PM
CAS classification : [[_homogeneous, `class A`], _rational, _Bernoulli]

\begin{align*} x y^{2} y^{\prime }&=x^{3}+y^{3} \end{align*}

Maple. Time used: 0.005 (sec). Leaf size: 56
ode:=x*y(x)^2*diff(y(x),x) = x^3+y(x)^3; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \left (3 \ln \left (x \right )+c_1 \right )^{{1}/{3}} x \\ y &= -\frac {\left (3 \ln \left (x \right )+c_1 \right )^{{1}/{3}} \left (1+i \sqrt {3}\right ) x}{2} \\ y &= \frac {\left (3 \ln \left (x \right )+c_1 \right )^{{1}/{3}} \left (i \sqrt {3}-1\right ) x}{2} \\ \end{align*}
Mathematica. Time used: 0.206 (sec). Leaf size: 63
ode=x*y[x]^2*D[y[x],x]==x^3+y[x]^3; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to x \sqrt [3]{3 \log (x)+c_1} \\ y(x)\to -\sqrt [3]{-1} x \sqrt [3]{3 \log (x)+c_1} \\ y(x)\to (-1)^{2/3} x \sqrt [3]{3 \log (x)+c_1} \\ \end{align*}
Sympy. Time used: 1.369 (sec). Leaf size: 68
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x**3 + x*y(x)**2*Derivative(y(x), x) - y(x)**3,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = \sqrt [3]{x^{3} \left (C_{1} + 3 \log {\left (x \right )}\right )}, \ y{\left (x \right )} = \frac {\sqrt [3]{x^{3} \left (C_{1} + 3 \log {\left (x \right )}\right )} \left (-1 - \sqrt {3} i\right )}{2}, \ y{\left (x \right )} = \frac {\sqrt [3]{x^{3} \left (C_{1} + 3 \log {\left (x \right )}\right )} \left (-1 + \sqrt {3} i\right )}{2}\right ] \]