7.5.3 problem 3

Internal problem ID [107]
Book : Elementary Differential Equations. By C. Henry Edwards, David E. Penney and David Calvis. 6th edition. 2008
Section : Chapter 1. First order differential equations. Section 1.6 (substitution and exact equations). Problems at page 72
Problem number : 3
Date solved : Saturday, March 29, 2025 at 04:31:46 PM
CAS classification : [[_homogeneous, `class A`], _dAlembert]

\begin{align*} x y^{\prime }&=y+2 \sqrt {x y} \end{align*}

Maple. Time used: 0.004 (sec). Leaf size: 19
ode:=x*diff(y(x),x) = y(x)+2*(x*y(x))^(1/2); 
dsolve(ode,y(x), singsol=all);
 
\[ -\frac {y}{\sqrt {x y}}+\ln \left (x \right )-c_1 = 0 \]
Mathematica. Time used: 0.171 (sec). Leaf size: 19
ode=x*D[y[x],x]==y[x]+2*Sqrt[x*y[x]]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {1}{4} x (2 \log (x)+c_1){}^2 \]
Sympy. Time used: 0.485 (sec). Leaf size: 22
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*Derivative(y(x), x) - 2*sqrt(x*y(x)) - y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1}^{2} x + x \log {\left (x \right )}^{2} - \log {\left (x^{2 C_{1} x} \right )} \]