Internal
problem
ID
[10254]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
linear
first
order
Problem
number
:
245
Date
solved
:
Sunday, March 30, 2025 at 03:34:36 PM
CAS
classification
:
[[_homogeneous, `class G`], _rational, [_Abel, `2nd type`, `class B`]]
ode:=(2*x*y(x)+4*x^3)*diff(y(x),x)+y(x)^2+112*x^2*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(2*x*y[x]+4*x^3)*D[y[x],x]+y[x]^2+112*x^2*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(112*x**2*y(x) + (4*x**3 + 2*x*y(x))*Derivative(y(x), x) + y(x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (-112*x**2 - y(x))*y(x)/(2*x*(2*x**2 + y(x))) cannot be solved by the factorable group method