7.4.32 problem 31 (b)

Internal problem ID [104]
Book : Elementary Differential Equations. By C. Henry Edwards, David E. Penney and David Calvis. 6th edition. 2008
Section : Chapter 1. First order differential equations. Section 1.5 (linear equations). Problems at page 54
Problem number : 31 (b)
Date solved : Saturday, March 29, 2025 at 04:31:33 PM
CAS classification : [_linear]

\begin{align*} y^{\prime }+p \left (x \right ) y&=q \left (x \right ) \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 24
ode:=diff(y(x),x)+p(x)*y(x) = q(x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \left (\int q \left (x \right ) {\mathrm e}^{\int p \left (x \right )d x}d x +c_1 \right ) {\mathrm e}^{-\int p \left (x \right )d x} \]
Mathematica. Time used: 0.044 (sec). Leaf size: 51
ode=D[y[x],x]+p[x]*y[x]==q[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \exp \left (\int _1^x-p(K[1])dK[1]\right ) \left (\int _1^x\exp \left (-\int _1^{K[2]}-p(K[1])dK[1]\right ) q(K[2])dK[2]+c_1\right ) \]
Sympy. Time used: 4.003 (sec). Leaf size: 41
from sympy import * 
x = symbols("x") 
y = Function("y") 
p = Function("p") 
q = Function("q") 
ode = Eq(p(x)*y(x) - q(x) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left (e^{\int p{\left (x \right )}\, dx} - \int p{\left (x \right )} e^{\int p{\left (x \right )}\, dx}\, dx\right ) y{\left (x \right )} + \int \left (p{\left (x \right )} y{\left (x \right )} - q{\left (x \right )}\right ) e^{\int p{\left (x \right )}\, dx}\, dx = C_{1} \]