60.1.185 problem 188

Internal problem ID [10199]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, linear first order
Problem number : 188
Date solved : Sunday, March 30, 2025 at 03:28:44 PM
CAS classification : [[_homogeneous, `class G`], _Abel]

\begin{align*} x^{2 n +1} y^{\prime }-a y^{3}-b \,x^{3 n}&=0 \end{align*}

Maple. Time used: 0.004 (sec). Leaf size: 32
ode:=x^(2*n+1)*diff(y(x),x)-a*y(x)^3-b*x^(3*n) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \operatorname {RootOf}\left (-\ln \left (x \right )+c_1 +\int _{}^{\textit {\_Z}}\frac {1}{\textit {\_a}^{3} a -n \textit {\_a} +b}d \textit {\_a} \right ) x^{n} \]
Mathematica. Time used: 0.226 (sec). Leaf size: 77
ode=x^(2*n+1)*D[y[x],x] - a*y[x]^3 - b*x^(3*n)==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\int _1^{\sqrt [3]{\frac {a x^{-3 n}}{b}} y(x)}\frac {1}{K[1]^3-\sqrt [3]{\frac {n^3}{a b^2}} K[1]+1}dK[1]=b x^n \log (x) \sqrt [3]{\frac {a x^{-3 n}}{b}}+c_1,y(x)\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
n = symbols("n") 
y = Function("y") 
ode = Eq(-a*y(x)**3 - b*x**(3*n) + x**(2*n + 1)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE -a*x**(-2*n - 1)*y(x)**3 - b*x**(n - 1) + Derivative(y(x), x) cannot be solved by the factorable group method