Internal
problem
ID
[10133]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
linear
first
order
Problem
number
:
122
Date
solved
:
Sunday, March 30, 2025 at 03:19:16 PM
CAS
classification
:
[`y=_G(x,y')`]
ode:=x*diff(y(x),x)+(sin(y(x))-3*x^2*cos(y(x)))*cos(y(x)) = 0; dsolve(ode,y(x), singsol=all);
ode=x*D[y[x],x] + (Sin[y[x]]-3*x^2*Cos[y[x]])*Cos[y[x]]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*Derivative(y(x), x) + (-3*x**2*cos(y(x)) + sin(y(x)))*cos(y(x)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (3*x**2*cos(2*y(x)) + 3*x**2 - sin(2*y(x)))/(2*x) cannot be solved by the factorable group method