60.1.116 problem 119

Internal problem ID [10130]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, linear first order
Problem number : 119
Date solved : Sunday, March 30, 2025 at 03:19:04 PM
CAS classification : [[_homogeneous, `class G`]]

\begin{align*} x y^{\prime }-y \left (\ln \left (x y\right )-1\right )&=0 \end{align*}

Maple. Time used: 0.070 (sec). Leaf size: 14
ode:=x*diff(y(x),x)-y(x)*(ln(x*y(x))-1) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {{\mathrm e}^{\frac {x}{c_1}}}{x} \]
Mathematica. Time used: 0.252 (sec). Leaf size: 26
ode=x*D[y[x],x] - y[x]*(Log[x*y[x]]-1)==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \frac {e^{e^{e c_1} x}}{x} \\ y(x)\to \frac {1}{x} \\ \end{align*}
Sympy. Time used: 0.437 (sec). Leaf size: 8
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*Derivative(y(x), x) - (log(x*y(x)) - 1)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {e^{C_{1} x}}{x} \]