60.1.97 problem 99

Internal problem ID [10111]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, linear first order
Problem number : 99
Date solved : Sunday, March 30, 2025 at 03:16:29 PM
CAS classification : [_rational, _Riccati]

\begin{align*} x y^{\prime }+a y^{2}-b y-c \,x^{\beta }&=0 \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 171
ode:=x*diff(y(x),x)+a*y(x)^2-b*y(x)-c*x^beta = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {-\sqrt {-c a}\, \left (\operatorname {BesselY}\left (\frac {b}{\beta }+1, \frac {2 \sqrt {-c a}\, x^{\frac {\beta }{2}}}{\beta }\right ) c_1 +\operatorname {BesselJ}\left (\frac {b}{\beta }+1, \frac {2 \sqrt {-c a}\, x^{\frac {\beta }{2}}}{\beta }\right )\right ) x^{\frac {\beta }{2}}+b \left (\operatorname {BesselY}\left (\frac {b}{\beta }, \frac {2 \sqrt {-c a}\, x^{\frac {\beta }{2}}}{\beta }\right ) c_1 +\operatorname {BesselJ}\left (\frac {b}{\beta }, \frac {2 \sqrt {-c a}\, x^{\frac {\beta }{2}}}{\beta }\right )\right )}{a \left (\operatorname {BesselY}\left (\frac {b}{\beta }, \frac {2 \sqrt {-c a}\, x^{\frac {\beta }{2}}}{\beta }\right ) c_1 +\operatorname {BesselJ}\left (\frac {b}{\beta }, \frac {2 \sqrt {-c a}\, x^{\frac {\beta }{2}}}{\beta }\right )\right )} \]
Mathematica. Time used: 0.317 (sec). Leaf size: 428
ode=x*D[y[x],x] + a*y[x]^2 - b*y[x] - c*x^\[Beta]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\frac {\sqrt {-a} \sqrt {c} x^{\beta /2} \left (-2 \operatorname {BesselJ}\left (\frac {b}{\beta }-1,\frac {2 \sqrt {-a} \sqrt {c} x^{\beta /2}}{\beta }\right )+c_1 \left (\operatorname {BesselJ}\left (1-\frac {b}{\beta },\frac {2 \sqrt {-a} \sqrt {c} x^{\beta /2}}{\beta }\right )-\operatorname {BesselJ}\left (-\frac {b+\beta }{\beta },\frac {2 \sqrt {-a} \sqrt {c} x^{\beta /2}}{\beta }\right )\right )\right )-b c_1 \operatorname {BesselJ}\left (-\frac {b}{\beta },\frac {2 \sqrt {-a} \sqrt {c} x^{\beta /2}}{\beta }\right )}{2 a \left (\operatorname {BesselJ}\left (\frac {b}{\beta },\frac {2 \sqrt {-a} \sqrt {c} x^{\beta /2}}{\beta }\right )+c_1 \operatorname {BesselJ}\left (-\frac {b}{\beta },\frac {2 \sqrt {-a} \sqrt {c} x^{\beta /2}}{\beta }\right )\right )} \\ y(x)\to \frac {-\sqrt {-a} \sqrt {c} x^{\beta /2} \operatorname {BesselJ}\left (1-\frac {b}{\beta },\frac {2 \sqrt {-a} \sqrt {c} x^{\beta /2}}{\beta }\right )+\sqrt {-a} \sqrt {c} x^{\beta /2} \operatorname {BesselJ}\left (-\frac {b+\beta }{\beta },\frac {2 \sqrt {-a} \sqrt {c} x^{\beta /2}}{\beta }\right )+b \operatorname {BesselJ}\left (-\frac {b}{\beta },\frac {2 \sqrt {-a} \sqrt {c} x^{\beta /2}}{\beta }\right )}{2 a \operatorname {BesselJ}\left (-\frac {b}{\beta },\frac {2 \sqrt {-a} \sqrt {c} x^{\beta /2}}{\beta }\right )} \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
BETA = symbols("BETA") 
a = symbols("a") 
b = symbols("b") 
c = symbols("c") 
y = Function("y") 
ode = Eq(a*y(x)**2 - b*y(x) - c*x**BETA + x*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE Derivative(y(x), x) - (-a*y(x)**2 + b*y(x) + c*x**BETA)/x cannot be solved by the factorable group method